Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells


SnO2 has been proven to be an effective electron transport layer (ETL) material for perovskite solar cells (PSCs) owing to its excellent electrical and optical properties. Here, we introduce a viable spray coating method for the preparation of SnO2 films. Then, we employ a SnO2 film prepared using the spray coating method as an ETL for PSCs. The PSC based on the spray-coated SnO2 ETL achieves a power conversion efficiency of 17.78%, which is comparable to that of PSCs based on conventional spin-coated SnO2 films. The large-area SnO2 films prepared by spray coating exhibit good repeatability for device performance. This study shows that SnO2 films prepared by spray coating can be applied as ETLs for stable and high-efficiency PSCs. Because the proposed method involves low material consumption, it enables the low-cost and large-scale production of PSCs.

This is a preview of subscription content, access via your institution.


  1. 1.

    Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nature Photonics, 2014, 8(7): 506–514

    CAS  Article  Google Scholar 

  2. 2.

    Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051

    CAS  Article  Google Scholar 

  3. 3.

    Kim H S, Im S H, Park N G. Organolead halide perovskite: New horizons in solar cell research. Journal of Physical Chemistry C, 2014, 118(11): 5615–5625

    CAS  Article  Google Scholar 

  4. 4.

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647

    CAS  Article  Google Scholar 

  5. 5.

    Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, et al. Efficient inorganic—organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7(6): 486–491

    CAS  Article  Google Scholar 

  6. 6.

    Huang J, Shao Y, Dong Q. Organometal trihalide perovskite single crystals: A next wave of materials for 25% efficiency photovoltaics and applications beyond? Journal of Physical Chemistry Letters, 2015, 6(16): 3218–3227

    CAS  Article  Google Scholar 

  7. 7.

    Snaith H J. Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630

    CAS  Article  Google Scholar 

  8. 8.

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319

    CAS  Article  Google Scholar 

  9. 9.

    Kazim S, Nazeeruddin M K, Gratzel M, Ahmad S. Perovskite as light harvester: A game changer in photovoltaics. Angewandte Chemie International Edition in English, 2014, 53(11): 2812–2824

    CAS  Article  Google Scholar 

  10. 10.

    Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angewandte Chemie International Edition in English, 2014, 53(48): 13239–13243

    CAS  Article  Google Scholar 

  11. 11.

    Zheng J, Zhang M, Lau C F J, Deng X, Kim J, Ma Q, Chen C, Green M A, Huang S, Ho-Baillie A. Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2017, 168: 165–171

    CAS  Article  Google Scholar 

  12. 12.

    Song J X, Zheng E Q, Bian J, Wang X F, Tian W, Sanehira Y, Miyasaka T. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(20): 10837–10844

    CAS  Article  Google Scholar 

  13. 13.

    Song J X, Zheng E Q, Wang X F, Tian W, Miyasaka T. Low-temperature-processed ZnO-SnO2 nanocomposite for efficient planar perovskite solar cells. Solar Energy Materials and Solar Cells, 2016, 144: 623–630

    CAS  Article  Google Scholar 

  14. 14.

    Xiong L B, Qin M C, Chen C, Wen J, Yang G, Guo Y X, Ma J J, Zhang Q, Qin P L, Li S Z, et al. Fully high-temperature-processed SnO2 as blocking layer and scaffold for efficient, stable, and hysteresis-free mesoporous perovskite solar cells. Advanced Functional Materials, 2018, 28(10): 1706276

    Article  Google Scholar 

  15. 15.

    Jung K H, Seo J Y, Lee S, Shin H, Park N G. Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(47): 24790–24803

    CAS  Article  Google Scholar 

  16. 16.

    Mahmood K, Swain B S, Kirmani A R, Amassian A. Highly efficient perovskite solar cells based on a nanostructured WO3-TiO2 core-shell electron transporting material. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(17): 9051–9057

    CAS  Article  Google Scholar 

  17. 17.

    Song J X, Liu L, Wang X F, Chen G, Tian W, Miyasaka T. Highly efficient and stable low-temperature processed ZnO solar cells with triple cation perovskite absorber. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13439–13447

    CAS  Google Scholar 

  18. 18.

    Song J X, Bian J, Zheng E Q, Wang X F, Tian W J, Miyasaka T. Efficient and environmentally stable perovskite solar cells based on ZnO electron collection layer. Chemistry Letters, 2015, 44(5): 610–612

    CAS  Article  Google Scholar 

  19. 19.

    Kim B J, Kim D H, Lee Y Y, Shin H W, Han G S, Hong J S, Mahmood K, Ahn T K, Joo Y C, Hong K S, et al. Highly efficient and bending durable perovskite solar cells: Toward a wearable power source. Energy & Environmental Science, 2015, 8(3): 916–921

    CAS  Article  Google Scholar 

  20. 20.

    Heo J H, Han H J, Kim D, Ahn T K, Im S H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1 % power conversion efficiency. Energy & Environmental Science, 2015, 8(5): 1602–1608

    CAS  Article  Google Scholar 

  21. 21.

    You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano, 2014, 8(2): 1674–1680

    CAS  Article  Google Scholar 

  22. 22.

    Guo Y, Yin X, Liu J, Chen W, Wen S, Que M, Xie H, Yang Y, Que W, Gao B. Vacuum thermal-evaporated SnO2 as uniform electron transport layer and novel management of perovskite intermediates for efficient and stable planar perovskite solar cells. Organic Electronics, 2019, 65: 207–214

    CAS  Article  Google Scholar 

  23. 23.

    Mahmood K, Khalid A, Nawaz F, Mehran M T. Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. Journal of Colloid and Interface Science, 2018, 532: 387–394

    CAS  Article  Google Scholar 

  24. 24.

    Mohamad Noh M F, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Mohd Yusoff A R, Jang J, Mat Teridi M A. Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. Journal of Alloys and Compounds, 2019, 773: 997–1008

    CAS  Article  Google Scholar 

  25. 25.

    Subbiah A S, Mathews N, Mhaisalkar S, Sarkar S K. Novel plasma-assisted low-temperature-processed SnO2 thin films for efficient flexible perovskite photovoltaics. ACS Energy Letters, 2018, 3(7): 1482–1491

    CAS  Article  Google Scholar 

  26. 26.

    Huang L, Sun X, Li C, Xu J, Xu R, Du Y, Ni J, Cai H, Li J, Hu Z, Zhang J. UV-sintered low-temperature solution-processed SnO2 as robust electron transport layer for efficient planar heterojunction perovskite solar cells. ACS Applied Materials & Interfaces, 2017, 9(26): 21909–21920

    CAS  Article  Google Scholar 

  27. 27.

    Ayadi M, Benhaoua O, Sebais M, Halimi O, Boudine B, Aida M S. Effect of cerium doping on the structural, optical and photocatalytic properties of SnO2 thin films prepared by spray pyrolysis method. Materials Research Express, 2019, 6(7): 076407

    CAS  Article  Google Scholar 

  28. 28.

    Palanichamy S, Mohamed J R, Kumar P S S, Pandiarajan S, Amalraj L. Physical properties of nebulized spray pyrolysised SnO2 thin films at different substrate temperature. Applied Physics. A, Materials Science & Processing, 2018, 124(9): 643

    Article  Google Scholar 

  29. 29.

    Benhaoua B, Abbas S, Rahal A, Benhaoua A, Aida M S. Effect of film thickness on the structural, optical and electrical properties of SnO2: F thin films prepared by spray ultrasonic for solar cells applications. Superlattices and Microstructures, 2015, 83: 78–88

    CAS  Article  Google Scholar 

  30. 30.

    Jiang Y Y, Wu C C, Li L R, Wang K, Tao Z, Gao F, Cheng W F, Cheng J T, Zhao X Y, Priya S, et al. All electrospray printed perovskite solar cells. Nano Energy, 2018, 53: 440–448

    CAS  Article  Google Scholar 

  31. 31.

    Elangovan E, Ramamurthi K. Studies on micro-structural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin Solid Films, 2005, 476(2): 231–236

    CAS  Article  Google Scholar 

  32. 32.

    Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films, 2002, 402(1–2): 71–78

    CAS  Article  Google Scholar 

  33. 33.

    Iskenderoğlu D, Guney H. Effect of mg dopant on SnO2 thin films grown by spray pyrolysis technique. Modern Physics Letters B, 2019, 33(4): 1950030

    Article  Google Scholar 

  34. 34.

    Palanichamy S, Mohamed J R, Kumar P S S, Pandiarajan S, Amalraj L. Volume of precursor solution effect on the properties of SnO2 thin films prepared by nebulized spray pyrolysis technique. Optical and Quantum Electronics, 2018, 50(9): 346

    Article  Google Scholar 

  35. 35.

    Palanichamy S, Mohamed J R, Kumar K D A, Anitha M, Pandiarajan S, Amalraj L. Effect of molar concentration on physical properties of spraydeposited SnO2 thin films using nebulizer. Journal of Sol-Gel Science and Technology, 2019, 89(2): 392–402

    CAS  Article  Google Scholar 

  36. 36.

    Abdelkrim A, Rahmane S, Nabila K, Hafida A, Abdelouahab O. Polycrystalline SnO2 thin films grown at different substrate temperature by pneumatic spray. Journal of Materials Science Materials in Electronics, 2017, 28(6): 4772–4779

    CAS  Article  Google Scholar 

  37. 37.

    Dhandayuthapani T, Sivakumar R, Ilangovan R, Gopalakrishnan C, Sanjeeviraja C, Jeyadheepan K. Eco-friendly nebulized spray deposition of bifunctional anatase TiO2 thin films exhibiting multicolor switching and efficient NH3 gas sensing at room temperature. Materials Research Express, 2019, 6(6): 065053

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Grants No. 11974129) to Xiao-Feng Wang and the Fundamental Research Funds for the Central Universities, Jilin University.

Author information



Corresponding authors

Correspondence to Ai-Jun Li or Xiao-Feng Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yang, L., Dall’Agnese, C. et al. Spray-coated SnO2 electron transport layer with high uniformity for planar perovskite solar cells. Front. Chem. Sci. Eng. 15, 180–186 (2021). https://doi.org/10.1007/s11705-020-1917-x

Download citation


  • spray coating
  • SnO2 film
  • ETL
  • PSCs