Recent development and application of thin-film thermoelectric cooler

Abstract

Recently, the performance and fabrication of thin-film thermoelectric materials have been largely enhanced. Based on this enhancement, the thin-film thermoelectric cooler (TEC) is becoming a research hot topic, due to its high cooling flux and microchip level size. To fulfill a thin-film TEC, interfacial problems are unavoidable, as they may largely reduce the properties of a thin-film TEC. Moreover, the architecture of a thin-film TEC should also be properly designed. In this review, we introduced the enhancement of thermoelectric properties of (Bi,Sb)2(Te,Se)3 solid solution materials by chemical vapor deposition, physical vapor deposition and electrodeposition. Then, the interfacial problems, including contact resistance, interfacial diffusion and thermal contact resistance, were discussed. Furthermore, the design, fabrication, as well as the performance of thin-film TECs were summarized.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    He J, Tritt T M. Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017, 357(6358):eaak9997

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bulman G, Barletta P, Lewis J, Baldasaro N, Manno M, Bar-Cohen A, Yang B. Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nature Communications, 2016, 7: 10302

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    He W, Zhang G, Zhang X, Ji J, Li G, Zhao X. Recent development and application of thermoelectric generator and cooler. Applied Energy, 2015, 143: 1–25

    Article  Google Scholar 

  5. 5.

    Zhao D, Tan G. A review of thermoelectric cooling: Materials, modeling and applications. Applied Thermal Engineering, 2014, 66 (1–2): 15–24

    Article  CAS  Google Scholar 

  6. 6.

    Kim S J, Lee H E, Choi H, Kim Y, We J H, Shin J S, Lee K J, Cho B J. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano, 2016, 10(12): 10851–10857

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Rowe D M. Thermoelectrics Handbook: Macro to Nano. Florida: CRC Press, 2006, 21–38

    Google Scholar 

  8. 8.

    Zhu W, Deng Y, Wang Y, Wang A. Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectronics Journal, 2013, 44(9): 860–868

    Article  Google Scholar 

  9. 9.

    Owoyele O, Ferguson S, O’Connor B T. Performance analysis of a thermoelectric cooler with a corrugated architecture. Applied Energy, 2015, 147: 184–191

    Article  Google Scholar 

  10. 10.

    Yin S, Zhu W, Deng Y, Tu Y, Shen S, Peng Y. Enhanced electrical conductivity and reliability for fiexible copper thin-film electrode by introducing aluminum buffer layer. Materials & Design, 2017, 116: 524–530

    Article  CAS  Google Scholar 

  11. 11.

    Tan M, Deng Y, Hao Y. Enhancement of thermoelectric properties induced by oriented nanolayer in Bi2Te27Se3 columnar films. Materials Chemistry and Physics, 2014, 146(1–2): 153–158

    Article  CAS  Google Scholar 

  12. 12.

    Zhu W, Deng Y, Cao L. Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy, 2017, 34(January): 463–471

    Article  CAS  Google Scholar 

  13. 13.

    Fitriani O R, Long B D, Barma M C, Riaz M. Sabri M F M, Said S M, Saidur R. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable & Sustainable Energy Reviews, 2016, 64: 635–659

    Article  CAS  Google Scholar 

  14. 14.

    Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, et al. Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. Nature Materials, 2007, 6(2): 129–134

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Lv H, Wang X D, Meng J H, Wang T H, Yan WM. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Applied Energy, 2016, 175: 285–292

    Article  Google Scholar 

  16. 16.

    Hicks L D, Dresselhaus M S. Effect of quantum-well structures on the thermomagnetic figure of merit. Physical Review. B, 1993, 47 (19): 12727–12731

    Article  CAS  Google Scholar 

  17. 17.

    Ohta H. Two-dimensional thermoelectric Seebeck coefficient of SrTiO3-based superlattices. Physica Status Solidi (B). Basin Research, 2008, 245(11): 2363–2368

    Article  CAS  Google Scholar 

  18. 18.

    Szczech J R, Higgins J M, Jin S. Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. Journal of Materials Chemistry, 2011, 21(12): 4037–4055

    Article  CAS  Google Scholar 

  19. 19.

    Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001, 413(6856): 597–602

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Feng J, Zhu W, Deng Y, Huang L, Liu L, Wang R, Hu L, Li Y, Song X, Yang Z, et al. An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods. Chinese Physics B, 2018, 27(4): 047210

    Article  CAS  Google Scholar 

  22. 22.

    Hicks L D, Dresselhaus M S. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review. B, 1993, 47(24): 16631–16634

    Article  CAS  Google Scholar 

  23. 23.

    Mahmood K, Ali A, Arshad M, Nabi M, Amin N, Murtaza S, Ejaz S, Khan M. Investigation of the optimal annealing temperature for the enhanced thermoelectric properties of MOCVD-grown ZnO films. Journal of Experimental and Theoretical Physics, 2017, 124(4): 580–583

    Article  CAS  Google Scholar 

  24. 24.

    Deng Y, Xiang Y, Song Y. Template-free synthesis and transport properties of Bi2Te3 ordered nanowire arrays via a physical vapor process. Crystal Growth & Design, 2009, 9(7): 3079–3082

    Article  CAS  Google Scholar 

  25. 25.

    Tan M, Deng Y, Wang Y. Ordered structure and high thermoelectric properties of Bi2(Te,Se)3 nanowire array. Nano Energy, 2014, 3: 144–151

    Article  CAS  Google Scholar 

  26. 26.

    Chen T, Lin P, Chang H, Chen C. Enhanced thermoelectricity of three dimensionally mesostructured BixSb2–xTe3 nanoassemblies: From micro-scaled open gaps to isolated sealed mesopores. Nanoscale, 2017, 9: 40–47

    Google Scholar 

  27. 27.

    Xiao Z, Kisslinger K, Dimasi E, Kimbrough J. The fabrication of nanoscale Bi2Te3/Sb2Te3 multilayer thin film-based thermoelectric power chips. Microelectronic Engineering, 2018, 197: 8–14

    Article  CAS  Google Scholar 

  28. 28.

    Shen S, Zhu W, Deng Y, Zhao H, Peng Y, Wang C. Enhancing thermoelectric properties of Sb2Te3 flexible thin film through microstructure control and crystal preferential orientation engineering. Applied Surface Science, 2017, 414: 197–204

    Article  CAS  Google Scholar 

  29. 29.

    Cao L, Deng Y, Gao H, Wang Y, Chen X, Zhu Z. Towards high refrigeration capability: The controllable structure of hierarchical Bi5Sb15Te3 flakes on a metal electrode. Physical Chemistry Chemical Physics, 2015, 17(10): 6809–6818

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Zhang Z, Wang Y, Deng Y, Xu Y. The effect of (00l) crystal plane orientation on the thermoelectric properties of Bi2Te3 thin film. Solid State Communications, 2011, 151(21): 1520–1523

    Article  CAS  Google Scholar 

  31. 31.

    Jung H, Myung N V. Electrodeposition of antimony telluride thin films from acidic nitrate-tartrate baths. Electrochimica Acta, 2011, 56(16): 5611–5615

    Article  CAS  Google Scholar 

  32. 32.

    Kim M Y, Oh T S. Processing and thermoelectric performance characterization of thin-film devices consisting of electrodeposited bismuth telluride and antimony telluride thin-film legs. Journal of Electronic Materials, 2011, 40(5): 759–764

    Article  CAS  Google Scholar 

  33. 33.

    Kim M Y, Oh T S. Preparation and characterization of Bi2Te3/Sb2Te3 thermoelectric thin-film devices for power generation. Journal of Electronic Materials, 2014, 43(6): 1933–1939

    Article  CAS  Google Scholar 

  34. 34.

    Kim J, Zhang M, Bosze W, Park S D, Lim J H, Myung N V. Maximizing thermoelectric properties by nanoinclusion of γ-SbTe in Sb2Te3 film via solid-state phase transition from amorphous Sb-Te electrodeposits. Nano Energy, 2015, 13: 727–734

    Article  CAS  Google Scholar 

  35. 35.

    Jung H, Lim J H, Park H, Kim J, Choa Y H, Myung N V. Lithographically patterned p-type SbxTey nanoribbons with controlled morphologies and dimensions. Journal of Physical Chemistry C, 2013, 117(33): 17303–17308

    Article  CAS  Google Scholar 

  36. 36.

    Jeong G, Kim Y U, Kim H, Kim Y J, Sohn H J. Prospective materials and applications for Li secondary batteries. Energy & Environmental Science, 2011, 4(6): 1986–2002

    Article  CAS  Google Scholar 

  37. 37.

    Lee K H, Kim O J. Analysis on the cooling performance of the thermoelectric micro-cooler. International Journal of Heat and Mass Transfer, 2007, 50(9–10): 1982–1992

    Article  Google Scholar 

  38. 38.

    Wang S, Xie W, Li H, Tang X. Enhanced performances of melt spun Bi2(Te,Se)3 for n-type thermoelectric legs. Intermetallics, 2011, 19 (7): 1024–1031

    Article  CAS  Google Scholar 

  39. 39.

    Mu X, Zhou H, He D, Zhao W, Wei P, Zhu W, Nie X, Liu H, Zhang Q. Enhanced electrical properties of stoichiometric Bi5Sb15Te3 film with high-crystallinity via layer-by-layer in-situ growth. Nano Energy, 2017, 33: 55–64

    Article  CAS  Google Scholar 

  40. 40.

    Vizel R, Bargig T, Beeri O, Gelbstein Y. Bonding of Bi2Te3-based thermoelectric legs to metallic contacts using Bi82Sb18 alloy. Journal of Electronic Materials, 2016, 45(3): 1296–1300

    Article  CAS  Google Scholar 

  41. 41.

    Kim S H, Kim S W, Kim G S, Kim J, Park J H, Yu H Y. Ar plasma treatment for III–V semiconductor-based transistor source/drain contact resistance reduction. Journal of Nanoscience and Nanotechnology, 2016, 16(10): 10389–10392

    Article  CAS  Google Scholar 

  42. 42.

    Taylor P J, Maddux J R, Meissner G, Venkatasubramanian R, Bulman G, Pierce J, Gupta R, Bierschenk J, Caylor C, D’Angelo J, et al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Applied Physics Letters, 2013, 103(4): 3–7

    Article  CAS  Google Scholar 

  43. 43.

    Kong X, Zhu W, Cao L, Peng Y, Shen S, Deng Y. Controllable electrical contact resistance between Cu and oriented-Bi2Te3 film via interface tuning. ACS Applied Materials & Interfaces, 2017, 9(30): 25606–25614

    Article  CAS  Google Scholar 

  44. 44.

    Yong H, Na S, Gang J-G, Shin H, Jeon S-J, Hyun S, Lee H-J. Study on the contact resistance of various metals (Au, Ti, and Sb) on Bi-Te and Sb-Te thermoelectric films. Japanese Journal of Applied Physics, 2016, 55(6S3): 06JE03

    Article  CAS  Google Scholar 

  45. 45.

    Song S M, Park J K, Sul O J, Cho B J. Determination of work function of graphene under a metal electrode and its role in contact resistance. Nano Letters, 2012, 12(8): 3887–3892

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Gupta R P, Xiong K, White J B, Cho K, Alshareef H N, Gnade B E. Low resistance ohmic contacts to Bi2Te3 using Ni and Co metallization. Journal of the Electrochemical Society, 2010, 157(6): H666

    Article  CAS  Google Scholar 

  47. 47.

    Byun K, Chung H, Lee J, Yang H, Song H J, Heo J, Seo D H, Park S, Hwang S W, Yoo I, et al. Graphene for true ohmic contact at metalsemiconductor junctions. Nano Letters, 2013, 13: 4001–4005

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Liu W, Jie Q, Kim H S, Ren Z. Current progress and future challenges in thermoelectric power generation: From materials to devices. Acta Materialia, 2015, 87(155): 357–376

    Article  CAS  Google Scholar 

  49. 49.

    Choi K, Kim J, Lee Y, Kim H. ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode. Thin Solid Films, 1999, 341(1–2): 152–155

    Article  CAS  Google Scholar 

  50. 50.

    Kim M, Choi K C. Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes. IEEE Transactions on Electron Devices, 2017, 64(8): 3508–3510

    Article  CAS  Google Scholar 

  51. 51.

    Zhou H, Mu X, Zhao W, Tang D, Wei P, Zhu W, Nie X, Zhang Q. Low interface resistance and excellent anti-oxidation of Al/Cu/Ni multilayer thin-film electrodes for Bi2Te3-based modules. Nano Energy, 2017, 40(August): 274–281

    Article  CAS  Google Scholar 

  52. 52.

    Peres L, Bou A, Barakel D, Torchio P. Ag TiO2 multilayer electrodes with broadband transparency for thin film solar cells. RSC Advances, 2016, 6(66): 61057–61063

    Article  CAS  Google Scholar 

  53. 53.

    Liu W, Wang H, Wang L, Wang X, Joshi G, Chen G, Ren Z. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te27Se3 legs for power generation applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(42): 13093–13100

    Article  CAS  Google Scholar 

  54. 54.

    Jiang C, Fan X, Rong Z, Zhang C, Li G, Feng B, Hu J, Xiang Q. Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes. Journal of Electronic Materials, 2017, 46(2): 1363–1370

    Article  CAS  Google Scholar 

  55. 55.

    Hsu H H, Cheng C H, Lin Y L, Chiou S H, Huang C H, Cheng C P. Structural stability of thermoelectric diffusion barriers: Experimental results and first principles calculations. Applied Physics Letters, 2013, 103: 053902

    Article  CAS  Google Scholar 

  56. 56.

    Cardinal T, Kwan M, Borca-Tasciuc T, Ramanath G. Multifold electrical conductance enhancements at metal-bismuth telluride interfaces modified using an organosilane monolayer. ACS Applied Materials & Interfaces, 2017, 9(3): 2001–2005

    Article  CAS  Google Scholar 

  57. 57.

    Feng S P, Chang Y H, Yang J, Poudel B, Yu B, Ren Z, Chen G. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials. Physical Chemistry Chemical Physics, 2013, 15(18): 6757–6762

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Aswal D K, Basu R, Singh A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects. Energy Conversion and Management, 2016, 114: 50–67

    Article  Google Scholar 

  59. 59.

    Ferreres X R, Aminorroaya Yamini S, Nancarrow M, Zhang C. Onestep bonding of Ni electrode to n-type PbTe: A step towards fabrication of thermoelectric generators. Materials & Design, 2016, 107: 90–97

    Article  CAS  Google Scholar 

  60. 60.

    Zhu X, Cao L, Zhu W, Deng Y. Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance. Advanced Materials Interfaces, 2018, 1801279: 1801279

    Article  CAS  Google Scholar 

  61. 61.

    Zhao D, Geng H, Teng X. Fabrication and reliability evaluation of CoSb3/W-Cu thermoelectric element. Journal of Alloys and Compounds, 2012, 517: 198–203

    Article  CAS  Google Scholar 

  62. 62.

    Venugopal V A, Ottaviani G, Bresolin C, Erbetta D, Modelli A, Varesi E. Thermal stability of Ge2Sb2Te5 in contact with Ti and TiN. Journal of Electronic Materials, 2009, 38(10): 2063–2068

    Article  CAS  Google Scholar 

  63. 63.

    Cardinal T, Kwan M, Borca-Tasciuc T, Ramanath G. Effect of molecular length on the electrical conductance across metalalkanedithiol-Bi2Te3 interfaces. Applied Physics Letters, 2016, 109(17): 173904

    Article  CAS  Google Scholar 

  64. 64.

    Cardinal T, Devender, Borca-Tasciuc T, Ramanath G. Tailoring electrical transport across metal-thermoelectric interfaces using a nanomolecular monolayer. ACS Applied Materials & Interfaces, 2016, 8(7): 4275–4279

    Article  CAS  Google Scholar 

  65. 65.

    Hong Y, Li L, Zeng X C, Zhang J. Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering. Nanoscale, 2015, 7(14): 6286–6294

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Liebert C H, Gaugler R E. The significance of thermal contact resistance in two-layer thermal-barrier-coated turbine vanes. Thin Solid Films, 1980, 73(2): 471–475

    Article  CAS  Google Scholar 

  67. 67.

    Su Y, Lu J, Huang B. Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances. International Journal of Heat and Mass Transfer, 2018, 117: 436–446

    Article  CAS  Google Scholar 

  68. 68.

    He R, Schierning G, Nielsch K. Thermoelectric devices: A review of devices, architectures, and contact optimization. Advanced Materials Technologies, 2017, 1700256: 1700256

    Google Scholar 

  69. 69.

    Zhu W, Deng Y, Gao M, Wang Y. Hierarchical Bi-Te based flexible thin-film solar thermoelectric generator with light sensing feature. Energy Conversion and Management, 2015, 106: 1192–1200

    Article  CAS  Google Scholar 

  70. 70.

    Huang M J, Yen R H, Wang A B. The influence of the Thomson effect on the performance of a thermoelectric cooler. International Journal of Heat and Mass Transfer, 2005, 48(2): 413–418

    Article  Google Scholar 

  71. 71.

    Cheng C H, Huang S Y, Cheng T C. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. International Journal of Heat and Mass Transfer, 2010, 53 (9–10): 2001–2011

    Article  CAS  Google Scholar 

  72. 72.

    Ju Y S. Impact of interface resistance on pulsed thermoelectric cooling. Journal of Heat Transfer, 2008, 130(1): 14502

    Article  Google Scholar 

  73. 73.

    Antonova E E, Looman D C. Finite elements for thermoelectric device analysis in ANSYS. International Conference on Thermoelectrics, ICT. Proceedings, 2005, 2005: 200–203

    Google Scholar 

  74. 74.

    Ebling D, Jaegle M, Bartel M, Jacquot A, Böttner H. Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. Journal of Electronic Materials, 2009, 38(7): 1456–1461

    Article  CAS  Google Scholar 

  75. 75.

    Bulman G E, Siivola E, Wiitala R, Venkatasubramanian R, Acree M, Ritz N. Three-stage thin-film superlattice thermoelectric multistage microcoolers with a ΔTmax of 102 K. Journal of Electronic Materials, 2009, 38(7): 1510–1515

    Article  CAS  Google Scholar 

  76. 76.

    Garcia J, Ramos D A L, Mohn M, Schlörb H, Rodriguez N P, Akinsinde L, Nielsch K, Schierning G, Reith H. Fabrication and modeling of integrated micro-thermoelectric cooler by templateassisted electrochemical deposition. ECS Journal of Solid State Science and Technology: JSS, 2017, 6(3): N3022–N3028

    Article  CAS  Google Scholar 

  77. 77.

    Mahajan R, Chiu C P, Chrysler G. Cooling a microprocessor chip. Proceedings of the IEEE, 2006, 94(8): 1476–1485

    Article  Google Scholar 

  78. 78.

    Enescu D, Virjoghe E O. A review on thermoelectric cooling parameters and performance. Renewable & Sustainable Energy Reviews, 2014, 38: 903–916

    Article  Google Scholar 

  79. 79.

    Habbe B, Nurnus J. Thin film thermoelectrics today and tomorrow. Electronics Cooling, 2011, 17: 24–31

    Google Scholar 

  80. 80.

    Wang P, Yang B, Bar-Cohen A. Mini-contact enhanced thermoelectric coolers for on-chip hot spot cooling. Heat Transfer Engineering, 2009, 30(9): 736–743

    Article  CAS  Google Scholar 

  81. 81.

    Li G, Garcia Fernandez J, Lara Ramos D A, Barati V, Pérez N, Soldatov I, Reith H, Schierning G, Nielsch K. Integrated microthermoelectric coolers with rapid response time and high device reliability. Nature Electronics, 2018, 1(10): 555–561

    Article  CAS  Google Scholar 

  82. 82.

    Buist R J. A new method for testing thermoelectric materials and devices. 11th International Conference on Thermoelectrics, Arlington, Texas, 1992: 15

    Google Scholar 

  83. 83.

    Gorodetskiy S M, Buist R J, Lau P G. Quality testing of two-stage thermoelectric cascades. XVI ICT’ 97 Proceedings ICT’97 16th International Conference on Thermoelectrics (Cat No97TH8291), 1997: 668–671

    Google Scholar 

  84. 84.

    Manno M, Yang B, Bar-cohen A. Non-contact method for characterization of small size thermoelectric modules. Review of Scientific Instruments, 2015, 86(8): 084701–084708

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the State Key Program of National Natural Science Foundation of China (Grant No. 61534001), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1601213), the National Natural Science Foundation of China (Grant Nos. 51601005 and 61704006), the Beijing Natural Science Foundation (Grant No. 2182032) and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhu or Yuan Deng.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zhu, W., Kong, X. et al. Recent development and application of thin-film thermoelectric cooler. Front. Chem. Sci. Eng. 14, 492–503 (2020). https://doi.org/10.1007/s11705-019-1829-9

Download citation

Keywords

  • thin-film thermoelectric cooler
  • interfaces
  • cooling flux
  • TE device fabrication