Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene

Abstract

A series of PdCu bimetallic catalysts with low Cu and Pd loadings and different Cu: Pd atomic ratios were prepared by conventionally sequential impregnation (CSI) and modified sequential impregnation (MSI) of Cu and Pd for selective hydrogenation of acetylene. Characterization indicates that the supported copper (II) nitrate in the PdCu bimetallic catalysts prepared by MSI can be directly reduced to Cu metal particles due to the hydrogen spillover from Pd to Cu(NO3)2 crystals. In addition, for the catalysts prepared by MSI, Pd atoms can form PdCu alloy on the surface of metal particles, however, for the catalysts prepared by CSI, Pd tends to migrate and exist below the surface layer of Cu. Reaction results indicate that compared with CSI, the MSI method enables samples to possess preferable stability as well as comparable reaction activity. This should be due to the MSI method in favor of the formation of PdCu alloy on the surface of metal particles. Moreover, even Pd loading is super low, < 0.045 wt-% in this study, by through adjusting Cu loading to an appropriate value, attractive reactivity and selectivity still can be achieved.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Vignola E, Steinmann S N, Farra A A, Vandegehuchte B D, Curulla D, Sautet P. Evaluating the risk of C-C bond formation during selective hydrogenation of acetylene on palladium. ACS Catalysis, 2018, 8(3): 1662–1671

    Article  Google Scholar 

  2. 2.

    Hu M, Zhang J, Zhu W, Chen Z, Gao X, Du X, Wan J, Zhou K, Chen C, Li Y. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11(2): 905–912

    Article  Google Scholar 

  3. 3.

    Pei G X, Liu X, Yang X, Zhang L, Wang A, Li L, Wang H, Wang X, Zhang T. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catalysis, 2017, 7(2): 1491–1500

    Article  Google Scholar 

  4. 4.

    McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890

    Article  Google Scholar 

  5. 5.

    McCue A J, Baker R T, Anderson J A. Acetylene hydrogenation over structured Au-Pd catalysts. Faraday Discussions, 2016, 188: 499–523

    Article  Google Scholar 

  6. 6.

    Feng J, Liu Y, Yin M, He Y, Zhao J, Sun J, Li D. Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2016, 344: 854–864

    Article  Google Scholar 

  7. 7.

    Liu Y, Zhao J, He Y, Feng J, Wu T, Li D. Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: Role of acidic and basic sites. Journal of Catalysis, 2017, 348: 135–145

    Article  Google Scholar 

  8. 8.

    Zhou H, Yang X, Li L, Liu X, Huang Y, Pan X, Wang A, Li J, Zhang T. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catalysis, 2016, 6(2): 1054–1061

    Article  Google Scholar 

  9. 9.

    Meuniera F, Maffrea M, Schuurmana Y, Colussib S, Trovarelli A. Acetylene semi-hydrogenation over Pd-Zn/CeO2: Relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105: 52–55

    Article  Google Scholar 

  10. 10.

    Kruppe C M, Krooswyk J D, Trenary M. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu (111) single-atom alloy. ACS Catalysis, 2017, 7(12): 8042–8049

    Article  Google Scholar 

  11. 11.

    McCue A J, Guerrero-Ruiz A, Rodriguez-Ramos I, Anderson J A. Palladium sulphide—a highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes. Journal of Catalysis, 2016, 340: 10–16

    Article  Google Scholar 

  12. 12.

    Hu M, Wang X. Effect of N3-species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104

    Article  Google Scholar 

  13. 13.

    McCue A J, McKenna F M, Anderson J A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459

    Article  Google Scholar 

  14. 14.

    Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212

    Article  Google Scholar 

  15. 15.

    Cao X, Ji Y, Luo Y. Dehydrogenation ofpropane to propylene by a Pd/Cu single-atom catalyst: Insight from first-principles calculations. Journal of Physical Chemistry C, 2015, 119(2): 1016–1023

    Article  Google Scholar 

  16. 16.

    Cao X, Fu Q, Luo Y. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Physical Chemistry Chemical Physics, 2014, 16(18): 8367–8375

    Article  Google Scholar 

  17. 17.

    Boucher M B, Zugic B, Cladaras G, Kammert J, Marcinkowski M D, Lawton T J, Sykes E C H, Flytzani-Stephanopoulos M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196

    Article  Google Scholar 

  18. 18.

    Cao X, Mirjalili A, Wheeler J, Xie W, Jang B W L. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene. Frontiers of Chemical Science & Engineering, 2015, 9(4): 442–449

    Article  Google Scholar 

  19. 19.

    Liu Y, He Y, Zhou D, Feng J, Li D. Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: Effect of Pd-Cu alloy formation. Catalysis Science & Technology, 2016, 6(9): 3027–3037

    Article  Google Scholar 

  20. 20.

    Li Y N, Jang B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1–2): 173–179

    Article  Google Scholar 

  21. 21.

    Liu C J, Li M, Wang J, Zhou X, Guo Q, Yan J, Li Y. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348

    Article  Google Scholar 

  22. 22.

    Dow W P, Wang Y, Huang T. TPR and XRD studies of yttria-doped ceria/γ-alumina-supported copper oxide catalyst. Applied Catalysis A, General, 2000, 190(1–2): 25–34

    Article  Google Scholar 

  23. 23.

    Renuka N K, Shijina AV, Praveen A K, Aniz C U. Redox properties and catalytic activity of CuO/g-Al2O3 Meso phase. Journal of Colloid and Interface Science, 2014, 434: 195–200

    Article  Google Scholar 

  24. 24.

    Sagar G V, Rao PVR, Srikanth C S, Chary K V R. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2. Journal of Physical Chemistry B, 2006, 110(28): 13881–13888

    Article  Google Scholar 

  25. 25.

    Li Y, Jang B W L. Selective hydrogenation of acetylene over Pd/Al2O3 catalysts: Effect of non-thermal RF plasma preparation methodologies. Topics in Catalysis, 2017, 60(12–14): 1–12

    Google Scholar 

  26. 26.

    Sa J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 Catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095

    Article  Google Scholar 

  27. 27.

    Ryu S K, Lee W K, Park S J. Thermal decomposition of hydrated copper nitrate [Cu(NO3)2·3H2O] on activated carbon fibers. Carbon letters, 2004, 5: 180–185

    Google Scholar 

  28. 28.

    Wu C, Yuan W, Huang Y, Xia Y, Yang H, Wang H, Liu X. Conversion of xylose into furfural catalyzed by bifunctional acidic ionic liquid immobilized on the surface of magnetic γ-Al2O3. Catalysis Letters, 2017, 147(4): 953–963

    Article  Google Scholar 

  29. 29.

    Chen C S, Lin J H, Lai T W. Low-temperature water gas shift reaction on Cu/SiO2 prepared by an atomic layer epitaxy technique. Chemical Communications, 2008, 40(40): 4983–4985

    Article  Google Scholar 

  30. 30.

    Dulaurent O, Courtois X, Perrichon V, Bianchi D J. Heats of adsorption of CO on a Cu/Al2O3 catalyst using FTIR spectroscopy at high temperatures and under adsorption equilibrium conditions. Journal of Physical Chemistry B, 2000, 104(25): 6001–6011

    Article  Google Scholar 

  31. 31.

    Fernández-García M, Anderson J A, Haller G L. Alloy formation and stability in Pd-Cu bimetallic catalysts. Journal of Chemical Physics, 1996, 100(40): 16247–16254

    Article  Google Scholar 

  32. 32.

    Mierczynski P, Vasilev K, Mierczynsk A, Maniukiewicz W, Maniecki T P. Highly selective Pd-Cu/ZnAl2O4 catalyst for hydrogen production. Applied Catalysis A, General, 2014, 479(6): 26–34

    Article  Google Scholar 

  33. 33.

    McCue A J, Anderson J A. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. Journal of Catalysis, 2016, 344: 854–864

    Article  Google Scholar 

  34. 34.

    Marakatti V S, Sarma S C, Joseph B, Banerjee D, Peter S C. Synthetically tuned atomic ordering in PdCu nanoparticles with enhanced catalytic activity towards solvent free benzylamine oxidation. ACS Applied Materials & Interfaces, 2017, 9(4): 3602–3615

    Article  Google Scholar 

  35. 35.

    Shao L D, Zhang W, Armbruster M, Teschner D, Girgsdies F, Zhang B S, Timpe O, Friedrich M, Schlogl R, Su D S. Nanosizing intermetallic compounds onto carbon nanotubes: Active and selective hydrogenation catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10231–10235

    Article  Google Scholar 

  36. 36.

    Zhang S, Chen C Y, Jang B W L, Zhu A M. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256: 161–169

    Article  Google Scholar 

  37. 37.

    Lee J W, Liu X, Mou C Y. Selective hydrogenation of acetylene over SBA-15 supported Au-Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the National Natural Science Foundation of China (Grant No. 1263094), Welch Foundation (No. T-0014), Key Scientific and Technological Project of Henan province, China (No. 182102410072) and Shanxi International Cooperation Project (No. 201703D421037) are acknowledged. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben W.-L. Jang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Lyu, T., Xie, W. et al. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene. Front. Chem. Sci. Eng. 14, 522–533 (2020). https://doi.org/10.1007/s11705-019-1822-3

Download citation

Keywords

  • copper
  • palladium
  • catalysts
  • acetylene
  • selective hydrogenation