Skip to main content
Log in

Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Chalcogenide nanostructured semiconductor, copper sulfide (CuS) was prepared from copper and sulfur powders in stoichiometric ratio by a simple, fast, and convenient one-step mechanochemical synthesis after 40 min of milling in an industrial eccentric vibratory mill. The kinetics of the mechanochemical synthesis and the influence of the physical properties of two Cu powder precursor types on the kinetics were studied. The crystal structure, physical properties, and morphology of the product were characterized by X-ray diffraction (XRD), the specific surface area measurements, particle size distribution and scanning electron microscopy. The XRD analysis confirmed the hexagonal crystal structure of the product-CuS (covellite) with the average size of the crystallites 11 nm. The scanning electron microscopy analysis has revealed that the agglomerated grains have a plate-like structure composed of CuS nanoparticles. The thermal analysis was performed to investigate the thermal stability of the mechanochemically synthesized CuS. The optical properties were studied using UV-Vis and photoluminescence spectroscopy. The determined optical band gap energy 1.80 eV responds to the value of the bulk CuS, because of agglomerated nanoparticles. In addition, a mechanism of CuS mechanochemical reaction was proposed, and the verification of CuS commercial production was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6(17): 9889–9924

    Article  CAS  Google Scholar 

  2. Roy P, Srivastava S K. Nanostructured copper sulfides: Synthesis, properties and applications. CrystEngComm, 2015, 17(41): 7801–7815

    Article  CAS  Google Scholar 

  3. Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. Small, 2014, 10(4): 631–645

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Li B, Fu F, Xu K, Zou R, Wang Q, Zhang B, Chen Z, Hu J. Facile synthesis of biocompatible cysteine-coated CuS nanoparticles with high photothermal conversion efficiency for cancer therapy. Dalton Transactions, 2014, 43(30): 11709–11715

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Scott J, Chen Y T, Guo L, Zhao M, Wang X, Lu W. Direct drygrinding synthesis of monodisperse lipophilic CuS nanoparticles. Materials Chemistry and Physics, 2015, 162: 671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou M, Song S, Zhao J, Tian M, Li C. Theranostic CuS nanoparticles targeting folate receptors for PET image-guided photothermal therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3(46): 8939–8948

    Article  CAS  PubMed  Google Scholar 

  7. Sahoo A K, Srivastava S K. Controllable architecture of CdS and CuS by single-source precursor-mediated approach and their photocatalytic activity. Journal of Nanoparticle Research, 2013, 15 (4): 1591–1606

    Article  CAS  Google Scholar 

  8. Yang Z K, Song L X, Teng Y, Xia J. Ethylenediamine-modulated synthesis of highly monodisperse copper sulfide microflowers with excellent photocatalytic performance. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(47): 20004–20009

    Article  CAS  Google Scholar 

  9. Aziz S B, Abdulwahid R T, Rsaul H A, Ahmed H M. In situ synthesis of CuS nanoparticle with a distinguishable SPR peak in NIR region. Journal of Materials Science Materials in Electronics, 2016, 27(5): 4163–4171

    Article  CAS  Google Scholar 

  10. Ullmann’s Encyclopedia of Industrial Chemistry. Vol A1. 5th ed. Florida: VCH Publishers, 1985

  11. The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals. New Jersey: Merck and Co., Inc., Whitehouse Station, 1996

  12. Hawley’s Condensed Chemical Dictionary. 13th ed. New York: John Wiley & Sons, Inc., 1997

  13. Tang K B, Chen D, Liu Y F, Shen G Z, Zheng H G, Qian Y T. Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route. Journal of Crystal Growth, 2004, 263(1–4): 232–236

    Article  CAS  Google Scholar 

  14. Du W, Qian X, Ma X, Gong Q, Cao H, Yin J. Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chemistry, 2007, 13(11): 3241–3247

    Article  CAS  PubMed  Google Scholar 

  15. Lou W J, Chen M, Wang X B, Liu W M. Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. Journal of Physical Chemistry C, 2007, 111(27): 9658–9663

    Article  CAS  Google Scholar 

  16. Zhang X, Wang G, Gu A, Wei Y, Fang B. CuS nanotubes for ultrasensitive nonenzymatic glucose sensors. Chemical Communications, 2008, 45(45): 5945–5947

    Article  CAS  Google Scholar 

  17. Shen X P, Zhao H, Shu H Q, Zhou H, Yuan A H. Self-assembly of CuS nanoflakes into flower-like microspheres: Synthesis and characterization. Journal of Physics and Chemistry of Solids, 2009, 70(2): 422–427

    Article  CAS  Google Scholar 

  18. Wang M R, Xie F, Li W J, Chen M F, Zhao Y. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(30): 8616–8621

    Article  CAS  Google Scholar 

  19. Lu Q Y, Gao F, Zhao D Y. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Letters, 2002, 2(7): 725–728

    Article  CAS  Google Scholar 

  20. Roy P, Srivastava S K. Hydrothermal growth of CuS nanowires from Cu-dithiooxamide, a novel single-source precursor. Crystal Growth & Design, 2006, 6(8): 1921–1926

    Article  CAS  Google Scholar 

  21. Chen L F, Yu W, Li Y. Synthesis and characterization of tubular CuS with flower-like wall from a low temperature hydrothermal route. Powder Technology, 2009, 191(1–2): 52–54

    Article  CAS  Google Scholar 

  22. Jia B R, Qin M L, Jiang X Z, Zhang Z L, Zhang L, Liu Y, Qu X H. Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals. Journal of Nanoparticle Research, 2013, 15(3): 1469–1478

    Article  CAS  Google Scholar 

  23. Auyoong Y L, Yap P L, Huang X, Abd Hamid S B. Optimization of reaction parameters in hydrothermal synthesis: A strategy towards the formation of CuS hexagonal plates. Chemistry Central Journal, 2013, 7(1): 67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen L F, Shang Y Z, Liu H L, Hu Y. Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion. Materials & Design, 2010, 31(4): 1661–1665

    Article  CAS  Google Scholar 

  25. Thongtem S, Wichasilp C, Thongtem T. Transient solid-state production of nanostructured CuS flowers. Materials Letters, 2009, 63(28): 2409–2412

    Article  CAS  Google Scholar 

  26. Nemade K R, Waghuley S A. Band gap engineering of CuS nanoparticles for artificial photosynthesis. Materials Science in Semiconductor Processing, 2015, 39: 781–785

    Article  CAS  Google Scholar 

  27. Abdelhady A L, Ramasamy K, Malik M A, O’Brien P, Haigh S J, Raftery J. New routes to copper sulfide nanostructures and thin films. Journal of Materials Chemistry, 2011, 21(44): 17888–17895

    Article  CAS  Google Scholar 

  28. Mukherjee N, Sinha A, Khan G G, Chandra D, Bhaumik A, Mondal A. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique. Materials Research Bulletin, 2011, 46(1): 6–11

    Article  CAS  Google Scholar 

  29. Xu H L, Wang W Z, Zhu W. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route. Materials Letters, 2006, 60(17–18): 2203–2206

    Article  CAS  Google Scholar 

  30. Ghezelbash A, Korgel B A. Nickel sulfide and copper sulfide nanocrystal synthesis and polymorphism. Langmuir, 2005, 21(21): 9451–9456

    Article  CAS  PubMed  Google Scholar 

  31. Xie Y, Carbone L, Nobile C, Grillo V, D’Agostino S, Della Sala F, Giannini C, Altamura D, Oelsner C, Kryschi C, Cozzoli P D. Metallic-like stoichiometric copper sulfide nanocrystals: Phase-and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling. ACS Nano, 2013, 7(8): 7352–7369

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Xue D F. Rapid and scalable route to CuS biosensors: A microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. Journal of Materials Chemistry, 2011, 21(1): 223–228

    Article  CAS  Google Scholar 

  33. Ghahremaninezhad A, Asselin E, Dixon D G. One-step templatefree electrosynthesis of 300 mm long copper sulfide nanowires. Electrochemistry Communications, 2011, 13(1): 12–15

    Article  CAS  Google Scholar 

  34. Wang F F, Dong H, Pan J L, Li J J, Li Q, Xu D S. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells. Journal of Physical Chemistry C, 2014, 118(34): 19589–19598

    Article  CAS  Google Scholar 

  35. Ohtani T, Motoki M, Koh K, Ohshima K. Synthesis of binary copper chalcogenides by mechanical alloying. Materials Research Bulletin, 1995, 30(12): 1495–1504

    Article  CAS  Google Scholar 

  36. Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Allsolid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochemistry Communications, 2003, 5(8): 701–705

    Article  CAS  Google Scholar 

  37. Baláž M, Zorkovská A, Urakaev F, Baláž P, Briančin J, Bujňáková Z, Achimovičová M, Gock E. Ultrafast mechanochemical synthesis of copper sulfides. RSC Advances, 2016, 6(91): 87836–87842

    Article  CAS  Google Scholar 

  38. Zhang B, Ge Z, Yu Z, Liu Y. CN Patent, 102320647 A, 2012–01–18

  39. Wang K, Tan G L. Synthesis and optical properties of CuS nanocrystals by mechanical alloying process. Current Nanoscience, 2010, 6(2): 163–168

    Article  CAS  Google Scholar 

  40. Kristl M, Ban I, Gyergyek S. Preparation of nanosized copper and cadmium chalcogenides by mechanochemical synthesis. Materials and Manufacturing Processes, 2013, 28(9): 1009–1013

    CAS  Google Scholar 

  41. Gmelins Handbuch der Anorganischen Chemie. Vol 60, Teil B: Kupfer. Weinheim: Verlag Chemie, GmbH, 1958, 424 (in German)

  42. Blachnik R, Muller A. The formation of Cu2S from the elements I. Copper used in form of powders. Thermochimica Acta, 2000, 361 (1-2): 31–52

    Article  CAS  Google Scholar 

  43. Földvári M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice, Vol 213. Occasional Papers of the Geological Institute of Hungary. Geological Institute of Hungary, 2011, 177

    Google Scholar 

  44. Dunn J G, Muzenda C. Thermal oxidation of covellite (CuS). Thermochimica Acta, 2001, 369(1-2): 117–123

    Article  CAS  Google Scholar 

  45. Berg L G, Shlyapkina E N. Characteristic features of sulfide mineral DTA. Journal of Thermal Analysis, 1975, 8(3): 417–426

    Article  CAS  Google Scholar 

  46. Tesfaye F, Lindberg D, Taskinen P. The Cu-Ni-S System and Its Significance in Metallurgical Processes. In: Allanore A, Barlett L, Wang C, Zhang L, Lee J, eds. EPD Congress 2016. Berlin: Springer International Publishing, 2016, 29–37

    Google Scholar 

  47. Zhang J, Zhang Z. Hydrothermal synthesis and optical properties of CuS nanoplates. Materials Letters, 2008, 62(16): 2279–2281

    Article  CAS  Google Scholar 

  48. Haram S K, Mahadeshwar A R, Dixit S G. Synthesis and characterization of copper sulfide nanoparticles in Triton-X 100 water-in-oil microemulsions. Journal of Physical Chemistry, 1996, 100(14): 5868–5873

    Article  CAS  Google Scholar 

  49. Dixit S G, Mahadeshwar A R, Haram S K. Some aspects of the role of surfactants in the formation of nanoparticles. Colloid Surface A, 1998, 133(1–2): 69–75

    Article  CAS  Google Scholar 

  50. Roy P, Srivastava S K. Low-temperature synthesis of CuS nanorods by simple wet chemical method. Materials Letters, 2007, 61(8–9): 1693–1697

    Article  CAS  Google Scholar 

  51. Li F, Wu J F, Qin Q H, Li Z, Huang X T. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technology, 2010, 198(2): 267–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was realized within the frame of the project “Infrastructure Improving of Centre of Excellence of Advanced Materials with Nano- and Submicron- Structure”, ITMS 26220120035, supported by the Operational Program “Research and Development” financed through European Regional Development Fund. It was also supported by Federal Ministry of Education and Research (BMBF), FKZ: 01DS15022 (BMBF), and the Slovak Research and Development Agency under the contract No. APVV-14-0103 and by the Slovak Grant Agency VEGA (projects 02/0065/18, 2/0175/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Achimovičová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achimovičová, M., Dutková, E., Tóthová, E. et al. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill. Front. Chem. Sci. Eng. 13, 164–170 (2019). https://doi.org/10.1007/s11705-018-1755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1755-2

Keywords

Navigation