Skip to main content
Log in

Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Copper nanoparticles-decorated polyaniline-derived mesoporous carbon that can serve as noble metal-free electrocatalyst for the hydrazine oxidation reaction (HzOR) is synthesized via a facile synthetic route. The material exhibits excellent electrocatalytic activity toward HzOR with low overpotential and high current density. The material also remains stable during the electrocatalytic reaction for long time. Its good electrocatalytic performance makes this material a promising alternative to conventional noble metal-based catalysts (e.g., Pt) that are commonly used in HzOR-based fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cazetta A L, Zhang T, Silva T L, Almeida V C, Asefa T. Bone charderived metal-free N- and S-co-doped nanoporous carbon and its efficient electrocatalytic activity for hydrazine oxidation. Applied Catalysis B: Environmental, 2018, 225: 30–39

    Article  CAS  Google Scholar 

  2. Martins A C, Huang X, Goswami A, Koh K, Meng Y, Almeida V C, Asefa T. Fibrous porous carbon electrocatalysts for hydrazine oxidation by using cellulose filter paper as precursor and selftemplate. Carbon, 2016, 102: 97–105

    Article  CAS  Google Scholar 

  3. Koh K, Meng Y, Huang X, Zou X, Chhowalla M, Asefa T. N- and O-doped mesoporous carbons derived from rice grains: Efficient metal-free electrocatalysts for hydrazine oxidation. Chemical Communications, 2016, 52(93): 13588–13591

    Article  CAS  PubMed  Google Scholar 

  4. Meng Y, Zou X, Huang X, Goswami A, Liu Z, Asefa T. Polypyrrole-derived nitrogen and oxygen co-doped mesoporous carbons as efficient metal-free electrocatalyst for hydrazine oxidation. Advanced Materials, 2014, 26(37): 6510–6516

    Article  CAS  PubMed  Google Scholar 

  5. Huang J, Zhao S, Chen W, Zhou Y, Yang X, Zhu Y, Li C. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation. Nanoscale, 2016, 8(11): 5810–5814

    Article  CAS  PubMed  Google Scholar 

  6. Yu D, Wei L, Jiang W, Wang H, Sun B, Zhang Q, Goh K, Si R, Chen Y. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction. Nanoscale, 2013, 5(8): 3457–3464

    Article  CAS  PubMed  Google Scholar 

  7. Ma Y, Li H, Wang R, Wang H, Lv W, Ji S. Ultrathin willow-like CuO nanoflakes as an efficient catalyst for electro-oxidation of hydrazine. Journal of Power Sources, 2015, 289: 22–25

    Article  CAS  Google Scholar 

  8. Yang G W, Gao G Y, Wang C, Xu C L, Li H L. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon, 2008, 46(5): 747–752

    Article  CAS  Google Scholar 

  9. Asefa T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Accounts of Chemical Research, 2016, 49(9): 1873–1883

    Article  CAS  PubMed  Google Scholar 

  10. White R J, Luque R, Budarin V L, Clark J H, Macquarrie D J. Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews, 2009, 38(2): 481–494

    Article  CAS  PubMed  Google Scholar 

  11. Wildgoose G G, Banks C E, Compton R G. Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small, 2006, 2(2): 182–193

    Article  CAS  PubMed  Google Scholar 

  12. Huang X, Zhou L J, Voiry D, Chhowalla M, Zou X, Asefa T. Monodisperse mesoporous carbon nanoparticles from polymer/ silica self-aggregates and their electrocatalytic activities. ACS Applied Materials & Interfaces, 2016, 8(29): 18891–18903

    Article  CAS  Google Scholar 

  13. Koh K, Jeon M, Chevrier D M, Zhang P, Yoon C W, Asefa T. Novel nanoporous N-doped carbon-supported ultrasmall Pd nanoparticles: Efficient catalysts for hydrogen storage and release. Applied Catalysis B: Environmental, 2017, 203: 820–828

    Article  CAS  Google Scholar 

  14. Meng Y, Voiry D, Goswami A, Zou X, Huang X, Chhowalla M, Liu Z, Asefa T. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions. Journal of the American Chemical Society, 2014, 136(39): 13554–13557

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Qin Z, Luo Q, Wu Z, Liu L, Shen B, Hu W. Microstructure and nanoindentation behavior of Cu composites reinforced with graphene nanoplatelets by electroless co-deposition technique. Scientific Reports, 2017, 7(1): 1338–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chaudhari N K, Song M Y, Yu J S. Heteroatom-doped highly porous carbon from human urine. Scientific Reports, 2014, 4(1): 5221–5230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang T, Low J, Huang X, Al-Sharab J F, Yu J, Asefa T. Copperdecorated microsized nanoporous titanium dioxide photocatalysts for carbon dioxide reduction by water. ChemCatChem, 2017, 9(15): 3054–3062

    Article  CAS  Google Scholar 

  18. Sugano Y, Shiraishi Y, Tsukamoto D, Ichikawa S, Tanaka S, Hirai T. Supported Au-Cu bimetallic alloy nanoparticles: An aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angewandte Chemie International Edition, 2013, 52(20): 5295–5299

    Article  CAS  PubMed  Google Scholar 

  19. Jiang D, Liu Q, Wang K, Qian J, Dong X, Yang Z, Du X, Qiu B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors & Bioelectronics, 2014, 54: 273–278

    Article  CAS  Google Scholar 

  20. Ryu S K, Lee W K, Park S J. Thermal decomposition of hydrated copper nitride [Cu(NO3)2·3H2O] on activated carbon fibers. Carbon Science, 2004, 5: 180–185

    Google Scholar 

  21. Bhaduri B, Verma N. Carbon bead-supported nitrogen-enriched and Cu-doped carbon nanofibers for the abatement of NO emissions by reduction. Journal of Colloid and Interface Science, 2015, 457: 62–71

    Article  CAS  PubMed  Google Scholar 

  22. Shiota K, Matsunaga H, Miyake A. Thermal analysis of ammonium nitrate and basic copper (II) nitrate mixtures. Journal of Thermal Analysis and Calorimetry, 2015, 121(1): 281–286

    Article  CAS  Google Scholar 

  23. Morales M V, Asedegbega-Nieto E, Bachiller-Baeza B, Cuerrero-Ruiz A. Bioethanol dehydrogenation over copper supported on functionalized graphene materials and a high surface area graphite. Carbon, 2016, 102: 426–436

    Article  CAS  Google Scholar 

  24. Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33(11): 1641–1653

    Article  CAS  Google Scholar 

  25. Matter P H, Zhang L, Ozkan U S. The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. Journal of Catalysis, 2006, 239(1): 83–96

    Article  CAS  Google Scholar 

  26. Colón G, Maicu M, Hidalgo J A, Navío J A. Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 2006, 67(1–2): 41–51

    Article  CAS  Google Scholar 

  27. Liu L, Gao F, Zhao H, Li Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Applied Catalysis B: Environmental, 2013, 134–135: 349–358

    Article  CAS  Google Scholar 

  28. Ola O, Maroto-Valer M M. Copper based TiO2 honeycomb monoliths for CO2 photoreduction. Catalysis Science & Technology, 2014, 4(6): 1631–1637

    Article  CAS  Google Scholar 

  29. Qin L, Xu H, Zhu K, Kang S Z, Li G, Li X. Noble-metal-free copper nanoparticles/reduced graphene oxide composite: A new and highly efficient catalyst for transformation of 4-nitrophenol. Catalysis Letters, 2017, 147(6): 1315–1321

    Article  CAS  Google Scholar 

  30. Park B K, Jeong S, Kim D, Moon J, Lim S, Kim J S. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007, 311(2): 417–424

    Article  CAS  PubMed  Google Scholar 

  31. Fard A K, Rhadfi T, Mckay G, Al-marri M, Abdala A, Hilal N, Hussien M A. Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 2016, 293: 90–101

    Article  CAS  Google Scholar 

  32. Xiong H, Moyo M, Motchelaho M A, Tetana Z N, Dube S M A, Jewell L L, Covile N J. Fischer-Tropsch synthesis: Iron catalysts supported on N-doped carbon spheres prepared by chemical vapor deposition and hydrothermal approaches. Journal of Catalysis, 2014, 311: 80–87

    Article  CAS  Google Scholar 

  33. Zou X, Silva R, Goswami A, Asefa T. Cu-doped carbon nitride: Bio-inspired synthesis of H2-evolving electrocatalysts using graphitic carbon nitride (g-C3N4) as a host material. Applied Surface Science, 2015, 357: 221–228

    Article  CAS  Google Scholar 

  34. Gao H, Wang Y, Xiao F, Ching C B, Duan H. Growth of copper nanocubes on graphene paper as free-standing electrodes for direct hydrazine fuel cells. Journal of Physical Chemistry C, 2012, 116(14): 7719–7725

    Article  CAS  Google Scholar 

  35. Liu C, Zhang H, Tang Y, Luo S. Controllable growth of graphene/ Cu composite and its nanoarchitecture-dependent electrocatalytic activity to hydrazine oxidation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(13): 4580–4587

    Article  CAS  Google Scholar 

  36. Ma Y, Wang H, Key J, Ji S, Lv W, Wang R. Control of CuO nanocrystal morphology from ultrathin “willow-leaf” to “flowershaped” for increased hydrazine oxidation activity. Journal of Power Sources, 2015, 300: 344–350

    Article  CAS  Google Scholar 

  37. Karim-Nezhad G, Jafarloo R, Dorraji P S. Copper (hydr)oxide modified copper electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochimica Acta, 2009, 54(24): 5721–5726

    Article  CAS  Google Scholar 

  38. Asazawa K, Yamada K, Tanaka H, Taniguchi M, Oguro K. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media. Journal of Power Sources, 2009, 191(2): 362–365

    Article  CAS  Google Scholar 

  39. Srivastava M, Das A K, Khanra P, Uddin M E, Kim N H, Lee J H. Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(34): 9792–9801

    Article  CAS  Google Scholar 

  40. Liu R, Ye K, Gao Y, Zhang W, Wang G, Gao D. Ag supported on carbon fiber cloth as the catalyst for hydrazine oxidation in alkaline medium. Electrochimica Acta, 2015, 186: 239–244

    Article  CAS  Google Scholar 

  41. Hosseini M, Momeni M M, Faraji M. Electro-oxidation of hydrazine on gold nanoparticles supported on TiO2 nanotube matrix as a new high active electrode. Journal of Molecular Catalysis A: Chemical, 2011, 335(1–2): 199–204

    Article  CAS  Google Scholar 

  42. Liang Y, Zhou Y, Ma J, Zhao J, Chen Y, Tang Y, Lu T. Preparation of highly dispersed and ultrafine Pd/C catalyst and its electrocatalytic performance for hydrazine electrooxidation. Applied Catalysis B: Environmental, 2011, 103(3–4): 388–396

    Article  CAS  Google Scholar 

  43. Yan X, Meng F, Cui S, Liu J, Gu J, Zou Z. Effective and rapid electrochemical detection of hydrazine by nanoporous gold. Journal of Electroanalytical Chemistry, 2011, 661(1): 44–48

    Article  CAS  Google Scholar 

  44. Chen L X, Jiang L Y, Wang A J, Chen Q Y, Feng J J. Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochimica Acta, 2016, 190: 872–878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Tewodros Asefa gratefully acknowledges the financial assistance of the US National Science Foundation (Grant No.: NSF DMR-1508611) and the Rutgers Energy Institute (REI) for enabling this research work. Tao Zhang also thanks REI for the graduate fellowship it offered him so that he was able to conduct the research work here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tewodros Asefa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Asefa, T. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation. Front. Chem. Sci. Eng. 12, 329–338 (2018). https://doi.org/10.1007/s11705-018-1741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1741-8

Keywords

Navigation