Skip to main content
Log in

Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A novel Cu-Mn-Ce/cordierite honeycomb catalyst was prepared by an incipient wetness method and the catalyst was characterized. The active ingredients were present as various spinel species of Cu, Mn and Ce oxides with different valences and they were unevenly dispersed over the surface of the catalyst. The catalytic oxidation of gaseous toluene was primarily investigated using a fixed bed reactor under microwave heating in the continuous flow mode. Under the optimal conditions of 6.7 wt-% loading of the active component, a bed temperature of 200°C, a flow rate of 0.12 m3·h–1 and an initial concentration of toluene of 1000 mg·m–3, the removal and mineralization efficiencies of toluene were 98% and 70%, respectively. Thus the use of the microwave effectively improved the oxidation of toluene and this is attributed to dipole polarization and hotspot effects. After four consecutive cycles (a total of 1980 min), the Cu-Mn- Ce/cordierite catalyst still exhibited excellent catalytic activity and structural stability, and the toluene removal was higher than 90%. This work demonstrates the possibility of treating volatile organic compounds in exhaust gases by microwave-assisted catalytic oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campagnolo D, Saraga D E, Cattaneo A, Spinazzè A, Mandin C, Mabilia R, Perreca E, Sakellaris I, Canha N, Mihucz V G, et al. VOCs and aldehydes source identification in European office buildings—The OFFICAIR study. Building and Environment, 2017, 115: 18–24

    Article  Google Scholar 

  2. Biasioli F, Yeretzian C, Gasperi F, Märk T D. PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trends in Analytical Chemistry, 2011, 30(7): 968–977

    Article  CAS  Google Scholar 

  3. Cruz M D, Christensen J H, Thomsen J D, Müller R. Can ornamental potted plants remove volatile organic compounds from indoor air?—a review. Environmental Science and Pollution Research International, 2014, 21(24): 13909–13928

    Article  CAS  Google Scholar 

  4. Zhang C G, Shen J L, Zhang Y X, Huang W W, Zhu X B, Wu X C, Chen L H, Gao X, Cen K F. Quantitative assessment of industrial VOC emissions in China: Historical trend, spatial distribution, uncertainties, and projection. Atmospheric Environment, 2017, 150: 116–125

    Article  CAS  Google Scholar 

  5. Ojala S, Pitkäaho S, Laitinen T, Koivikko N N, Brahmi R, Gaálová J, Matejova L, Kucherov A, Päivärinta S, Hirschmann C, et al. Catalysis in VOC abatement. Topics in Catalysis, 2011, 54(16-18): 1224–12566

    Article  CAS  Google Scholar 

  6. Lerner J E C, Kohajda T, Aguilar M E, Massolo L A, Sánchez E Y, Porta A A, Opitz P, Wichmann G, Herbarth O, Mueller A. Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas. Environmental Science and Pollution Research International, 2014, 21(16): 9676–9688

    Article  CAS  PubMed  Google Scholar 

  7. Gong Y, Wei Y J, Cheng J H, Jiang T Y, Chen L, Xu B. Health risk assessment and personal exposure to Volatile Organic Compounds (VOCs) in metro carriages—a case study in Shanghai, China. Science of the Total Environment, 2017, 574: 1432–1438

    Article  CAS  PubMed  Google Scholar 

  8. Nevers N D. Air Pollution Control Engineering. Beijing: Tsinghua University Press, 2000, 329–330

    Google Scholar 

  9. Wang H L, Nie L, Li J, Wang Y F, Wang G, Wang J H, Hao Z P. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Environmental Chemistry, 2013, 58(7): 724–730

    CAS  Google Scholar 

  10. Zallouha M A, Landkocz Y, Brunet J, Cousin R, Genty E, Courcot D, Siffert S, Shirali P, Billet S. Usefulness of toxicological validation of VOCs catalytic degradation by air-liquid interface exposure system. Environmental Research, 2017, 152: 328–335

    Article  CAS  PubMed  Google Scholar 

  11. Zhang X Y, Gao B, Creamer A E, Cao C C, Li Y C. Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials, 2017, 338: 102–123

    Article  CAS  PubMed  Google Scholar 

  12. Malakar S, Saha P D, Baskaran D, Rajamanickam R. Comparative study of biofiltration process for treatment of VOCs emission from petroleum refinery wastewater—a review. Environmental Technology & Innovation, 2017, 8: 441–461

    Article  Google Scholar 

  13. Kim E H, Chun Y N. VOC decomposition by a plasma-cavity combustor. Chemical Engineering and Processing: Process Intensification, 2016, 104: 51–57

    Article  CAS  Google Scholar 

  14. Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmospheric Environment, 2016, 140: 117–134

    Article  CAS  Google Scholar 

  15. Tabakova T, Kolentsova E, Dimitrov D, Ivanov K, Manzoli M, Venezia A M, Karakirova Y, Petrova P, Nihtianova D, Avdeev G C O. CO and VOCs catalytic oxidation over alumina supported Cu–Mn catalysts: Effect of Au or Ag deposition. Topics in Catalysis, 2017, 60(1-2): 110–122

    Article  CAS  Google Scholar 

  16. Idakiev V, Dimitrov D, Tabakova T, Ivanov K, Yuan Z Y, Su B L. Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chinese Journal of Catalysis, 2015, 36(4): 579–587

    Article  CAS  Google Scholar 

  17. Colman-Lerner J E, Peluso M A, Sambeth J E, Thomas H J. Volatile organic compound removal over bentonite-supported Pt, Mn and Pt/Mn monolithic catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108(2): 443–458

    Article  CAS  Google Scholar 

  18. Gómez D M, Gatica J M, Hernández-Garrido J C, Cifredo G A, Montes M, Sanz O, Rebled J M, Vidal H. A novel CoOx/Lamodified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation. Applied Catalysis B: Environmental, 2014, 144: 425–434

    Article  CAS  Google Scholar 

  19. Sun J Y, Bo L L, Yang L, Liang X X, Hu X J. A carbon nanodot modified Cu-Mn-Ce/ZSM catalyst for the enhanced microwaveassisted degradation of gaseous toluene. RSC Advances, 2014, 4(28): 14385–14391

    Article  CAS  Google Scholar 

  20. Li L D, Zhang F X, Guan N J. Ir/ZSM-5/cordierite monolith for catalytic NOx reduction from automobile exhaust. Catalysis Communications, 2008, 9(3): 409–415

    Article  CAS  Google Scholar 

  21. El Khaled D, Novas N, Gazquez J A, Manzano-Agugliaro F. Microwave dielectric heating: Applications on metals processing. Renewable & Sustainable Energy Reviews, 2018, 82: 2880–2892

    Article  CAS  Google Scholar 

  22. Mishra R R, Sharma A K. Microwave-material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing. Composites Part A: Applied Science and Manufacturing, 2016, 81: 78–97

    Article  CAS  Google Scholar 

  23. Buchelnikov V D, Louzguine-Luzgin D V, Anzulevich A P, Bychkov I V, Yoshikawa N, Sato M, Inoue A. Modeling of microwave heating of metallic powders. Physica B: Condensed Matter, 2008, 403(21–22): 4053–4058

    Article  CAS  Google Scholar 

  24. Horikoshi S, Osawa A, Sakamoto S, Serpone N. Control of microwave-generated hot spots. Part V. Mechanisms of hot-spot generation and aggregation of catalyst in a microwave-assisted reaction in toluene catalyzed by Pd-loaded AC particulates. Applied Catalysis A: General, 2013, 460–461: 52–60

    Article  CAS  Google Scholar 

  25. Mukhopadhyay I, Sastry K V L N. Dipole moment of methanol by microwave stark spectroscopy IV: 13CD3 16. Journal of Molecular Structure, 2015, 1098: 119–123

    Article  CAS  Google Scholar 

  26. Bo L L, Liu H N, Wang X H, Zhang H, Sun J Y, Yang L. Study on the catalytic oxidation of toluene under different heating modes. Environmental Chemistry, 2013, 32(8): 1524–1531 (in Chinese)

    CAS  Google Scholar 

  27. Bo L L, Yang L, Sun J Y, Liang X X, Hu X J, Meng H L. Catalytic oxidation of two-component VOCs and kinetic analysis. Environmental Sciences, 2014, 35(9): 3302–3308 (in Chinese)

    CAS  Google Scholar 

  28. Wang B, Rui M, Xue G C, Zhang L. Research progress on thermal oxidation technology for industrial organic waste gas. Chemical Industry and Engineering Progeress, 2017, 36(11): 4232–4242 (in Chinese)

    Google Scholar 

  29. Bo L L, Liao J B, Zhang Y C, Wang X H, Yang Q. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating. Frontiers of Environmental Science & Engineering, 2013, 7(3): 395–402

    Article  CAS  Google Scholar 

  30. Yi H H, Yang Z Y, Tang X H, Zhao S Z, Gao F Y, Wang J G, Huang Y H, Ma Y Q, Chu C, Li Q, Xu J. Promotion of low temperature oxidation of toluene vapor derived from the combination of microwave radiation and nano-size Co3O4. Chemical Engineering Journal, 2018, 333: 554–563

    Article  CAS  Google Scholar 

  31. Li F, Shen B X, Tian L H, Li G L, He C. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica. Powder Technology, 2016, 297: 384–391

    Article  CAS  Google Scholar 

  32. Sutradhar M, Alegria E C B A, Roy Barman T, Scorcelletti F, Guedes da Silva M F C, Pombeiro A J L. Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu(II) complexes. Molecular Catalysis, 2017, 439: 224–232

    Article  CAS  Google Scholar 

  33. Li S, Zhang G S, Wang P, Zheng H S, Zheng Y J. Microwaveenhanced Mn-Fenton process for the removal of BPA in water. Chemical Engineering Journal, 2016, 294: 371–379

    Article  CAS  Google Scholar 

  34. Lu H F, Zhou Y, Huang H F, Zhang B, Chen Y F. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion. Journal of Rare Earths, 2011, 29(9): 855–860

    Article  CAS  Google Scholar 

  35. Lu H F, Kong X X, Huang H F, Zhou Y, Chen Y F. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene. Journal of Environmental Sciences, 2015, 32: 102–107

    Article  CAS  Google Scholar 

  36. He C, Yu Y K, Shi J W, Shen Q, Chen J S, Liu H X. Mesostructured Cu-Mn-Ce-O composites with homogeneous bulk composition for chlorobenzene removal: Catalytic performance and microactivation course. Materials Chemistry and Physics, 2015, 157: 87–100

    Article  CAS  Google Scholar 

  37. Morales M R, Agüero F N, Cadus L E. Catalytic combustion of n-hexane over alumina supported Mn-Cu-Ce catalysts. Catalysis Letters, 2013, 143(10): 1003–1011

    Article  CAS  Google Scholar 

  38. Ren T Z, Xu P B, Deng Q F, Yuan Z Y. Mesoporous Ce1-xMnxO2 mixed oxides with CuO loading for the catalytic total oxidation of propane. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110(2): 405–420

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Technological Innovation Team of Shaanxi Province (2017KCT-19-01) and the Innovative Research Team of Xi’an University of Architecture and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longli Bo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, L., Sun, S. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst. Front. Chem. Sci. Eng. 13, 385–392 (2019). https://doi.org/10.1007/s11705-018-1738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1738-3

Keywords

Navigation