Skip to main content
Log in

Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

With the development of carbon catalysts, graphene-based metal-free catalysts have drawn increasing attention in both scientific research and in industrial chemical production processes. In recent years, the catalytic activities of metal-free catalysts have significantly improved and they have become promising alternatives to traditional metal-based catalysts. The use of metal-free catalysts greatly improves the sustainability of chemical processes. In view of this, the recent progress in the preparation of graphene-based metal-free catalysts along with their applications in catalytic oxidation, reduction and coupling reactions are summarized in this review. The future trends and challenges for the design of graphenebased materials for industrial organic catalytic reactions with good stabilities and high catalytic performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chowdhury A D, Houben K, Whiting G T, Chung S H, Baldus M, Weckhuysen B M. Electrophilic aromatic substitution over zeolites generates Wheland-type reaction intermediates. Nature Catalysis, 2017, 1(1): 23–31

    Article  CAS  Google Scholar 

  2. Hasany M, Malakootikhah M, Rahmanian V, Yaghmaei S. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor. Chinese Journal of Chemical Engineering, 2015, 23(8): 1316–1325

    Article  CAS  Google Scholar 

  3. Koven A B, Tong S S, Farnood R R, Jia C Q. Alkali-thermal gasification and hydrogen generation potential of biomass. Frontiers of Chemical Science and Engineering, 2017, 11(3): 369–378

    Article  CAS  Google Scholar 

  4. Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews, 2017, 117(9): 6225–6331

    Article  CAS  PubMed  Google Scholar 

  5. Georgakilas V, Perman J A, Tucek J, Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 2015, 115(11): 4744–4822

    Article  CAS  PubMed  Google Scholar 

  6. Ye M, Zhang Z, Zhao Y, Qu L. Graphene platforms for smart energy generation and storage. Joule, 2018, 2(2): 1–24

    Article  CAS  Google Scholar 

  7. Wang D, Zhu L, Chen J F, Dai L. Can graphene quantum dots cause DNA damage in cells? Nanoscale, 2015, 7(21): 9894–9901

    Article  CAS  PubMed  Google Scholar 

  8. Tao H, Gao Y, Talreja N, Guo F, Texter J, Yan C, Sun Z. Twodimensional nanosheets for electrocatalysis in energy generation and conversion. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(16): 7257–7284

    Article  CAS  Google Scholar 

  9. Salehi E, Soroush F, Momeni M, Barati A, Khakpour A. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance. Frontiers of Chemical Science and Engineering, 2017, 11(4): 575–585

    Article  CAS  Google Scholar 

  10. Xiang Z, Wang D, Xue Y, Dai L, Chen J F, Cao D. PAF-derived nitrogen-doped 3D carbon materials for efficient energy conversion and storage. Scientific Reports, 2015, 5(1): 8307–8314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Dai L. Carbon-based metal-free catalysts. Nature Reviews Materials, 2016, 1(11): 16064–16075

    Article  CAS  Google Scholar 

  12. Su D S, Wen G, Wu S, Peng F, Schlögl R. Carbocatalysis in liquidphase reactions. Angewandte Chemie International Edition, 2017, 56(4): 936–964

    Article  CAS  PubMed  Google Scholar 

  13. Wang D, Wang Z, Zhan Q, Pu Y, Wang J X, Foster N R, Dai L. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering, 2017, 3(3): 402–408

    Article  Google Scholar 

  14. Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X. Graphene oxide: A convenient metal-free carbocatalyst for facilitating aerobic oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran. ACS Catalysis, 2015, 5(8): 5636–5646

    Article  CAS  Google Scholar 

  15. Wang S, Li Y, Fan X, Zhang F, Zhang G. β-Cyclodextrin functionalized graphene oxide: An efficient and recyclable adsorbent for the removal of dye pollutants. Frontiers of Chemical Science and Engineering, 2015, 9(1): 77–83

    Article  CAS  Google Scholar 

  16. Liu Z, Wang W, Ju X, Xie R, Chu L. Graphene-based membranes for molecular and ionic separations in aqueous environments. Chinese Journal of Chemical Engineering, 2017, 25(11): 1598–1605

    Article  Google Scholar 

  17. Kong X K, Chen C L, Chen Q W. Doped graphene for metal-free catalysis. Chemical Society Reviews, 2014, 43(8): 2841–2857

    Article  CAS  PubMed  Google Scholar 

  18. Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11(3): 218–230

    Article  CAS  PubMed  Google Scholar 

  19. Dai L, Xue Y, Qu L, Choi H J, Baek J B. Metal-free catalysts for oxygen reduction reaction. Chemical Reviews, 2015, 115(11): 4823–4892

    Article  CAS  PubMed  Google Scholar 

  20. Shinde S S, Lee C H, Sami A, Kim D H, Lee S U, Lee J H. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn-Air batteries. ACS Nano, 2017, 11(1): 347–357

    Article  CAS  PubMed  Google Scholar 

  21. Huang P Y, Ruiz-Vargas C S, van der Zande A M, Whitney W S, Levendorf MP, Kevek J W, Garg S, Alden J S, Hustedt C J, Zhu Y, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011, 469(7330): 389–392

    Article  CAS  Google Scholar 

  22. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  CAS  Google Scholar 

  23. Tang P, Hu G, Li M, Ma D. Graphene-based metal-free catalysts for catalytic reactions in the liquid phase. ACS Catalysis, 2016, 6 (10): 6948–6958

    Article  CAS  Google Scholar 

  24. Ma Y, Chen Y. Three-dimensional graphene networks: Synthesis, properties and applications. National Science Review, 2015, 2(1): 40–53

    Article  CAS  Google Scholar 

  25. Senthilkumar K, Prabakar S R, Park C, Jeong S, Lah M S, Pyo M. Graphene oxide self-assembled with a cationic fullerene for high performance pseudo-capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(5): 1663–1670

    Article  CAS  Google Scholar 

  26. Kim J, Sang W K, Yun H, Kim B J. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube-polymer composites. RSC Advances, 2017, 7(48): 30221–30228

    Article  CAS  Google Scholar 

  27. Ambrosetti A, Silvestrelli P L. Adsorption of rare-gas atoms and water on graphite and graphene by van der waals-corrected density functional theory. Journal of Physical Chemistry C, 2017, 115(9): 3695–3702

    Article  CAS  Google Scholar 

  28. Esfandiyari T, Nasirizadeh N, Dehghani M, Ehrampoosh M H. Graphene oxide based carbon composite as adsorbent for Hg removal: Preparation, characterization, kinetics and isotherm studies. Chinese Journal of Chemical Engineering, 2017, 25(9): 1170–1175

    Article  CAS  Google Scholar 

  29. Kato R, Minami S, Koga Y, Hasegawa M. High growth rate chemical vapor deposition of graphene under low pressure by RF plasma assistance. Carbon, 2016, 96: 1008–1013

    Article  CAS  Google Scholar 

  30. Kim S, Song Y, Heller M J. Seamless aqueous arc discharge process for producing graphitic carbon nanostructures. Carbon, 2017, 120: 83–88

    Article  CAS  Google Scholar 

  31. Patil I M, Lokanathan M, Kakade B. Three dimensional nanocomposite of reduced graphene oxide and hexagonal boron nitride as an efficient metal-free catalyst for oxygen electroreduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(12): 4506–4515

    Article  CAS  Google Scholar 

  32. Tam T V, Kang S G, Babu K F, Oh E S, Leeb S G, Choi W M. Synthesis of B-doped graphene quantum dots as metal-free electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(21): 10537–10543

    Article  Google Scholar 

  33. Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. Journal of Physical Chemistry B, 1998, 102(23): 4477–4482

    Article  CAS  Google Scholar 

  34. Haag D R, Kung H H. Metal free graphene based catalysts: A review. Topics in Catalysis, 2014, 57(6–9): 762–773

    Article  CAS  Google Scholar 

  35. Tu W, Zhou Y, Zou Z. Versatile graphene-promoting photocatalytic performance of semiconductors: Basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 2013, 23(40): 4996–5008

    Article  CAS  Google Scholar 

  36. Shao P, Tian J, Yang F, Duan X, Gao S, Shi W, Luo X, Cui F, Luo S, Wang S. Identification and regulation of active sites on nanodiamonds: Establishing a highly efficient catalytic system for oxidation of organic contaminants. Advanced Functional Materials, 2018, 28(13): 1705295–1705302

    Article  CAS  Google Scholar 

  37. Hummers W S Jr, Offeman R E. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339–1339

    Article  CAS  Google Scholar 

  38. Chen J, Li Y, Huang L, Li C, Shi G. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon, 2015, 81(1): 826–834

    Article  CAS  Google Scholar 

  39. Bai J, Sun H, Yin X, Yin X, Wang S, Creamer A E, Xu L, Qin Z, He F, Gao B. Oxygen-content-controllable graphene oxide from electron-beam-irradiated graphite: Synthesis, characterization, and removal of aqueous lead. ACS Applied Materials & Interfaces, 2016, 8(38): 25289–25296 (Pb(II))

    Article  CAS  Google Scholar 

  40. Gao Y J, Hu G, Zhong J, Shi Z J, Zhu Y S, Su D S, Wang J G, Bao X H, Ma D. Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie International Edition, 2013, 52(7): 2109–2113

    Article  CAS  PubMed  Google Scholar 

  41. Kumar R, Singh R K, Vaz A R, Savu R, Moshkalev S A. Selfassembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high performance supercapacitor electrode. ACS Applied Materials & Interfaces, 2017, 9(10): 8880–8890

    Article  CAS  Google Scholar 

  42. Hu G, Xu C, Sun Z, Wang S, Cheng H M, Li F, Ren W. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Advanced Materials, 2016, 28(8): 1603–1609

    Article  CAS  PubMed  Google Scholar 

  43. Mu X, Yuan B, Feng X, Qiu S, Song L, Hu Y. The effect of doped heteroatoms (nitrogen, boron, phosphorus) on inhibition thermal oxidation of reduced graphene oxide. RSC Advances, 2016, 6 (107): 105021–105029

    Article  CAS  Google Scholar 

  44. Aunkor MH, Mahbubul I M, Saidurb R, Metselaar H C. The green reduction of graphene oxide. RSC Advances, 2016, 6(33): 27807–27828

    Article  CAS  Google Scholar 

  45. Sykam N, Rao G M. Room temperature synthesis of reduced graphene oxide nanosheets as anode material for supercapacitors. Materials Letters, 2014, 204: 169–172

    Article  CAS  Google Scholar 

  46. Kong X K, Sun Z, Chen M, Chen C, Chen Q W. Metal-free catalytic reduction of 4-nitrophenol to 4-aminophenol by N-doped graphene. Energy & Environmental Science, 2013, 6(11): 3260–3266

    Article  CAS  Google Scholar 

  47. Xu K, Fu Y, Zhou Y, Hennersdorf F, Machata P, Vincon I, Weigand J J, Popov A A, Berger R, Feng X. Cationic nitrogendoped helical nanographenes. Angewandte Chemie International Edition, 2017, 56(50): 15876–15881

    Article  CAS  PubMed  Google Scholar 

  48. Tao H, Yan C, Robertson A W, Gao Y, Ding J, Zhang Y, Maa T, Sun Z. N-doping of graphene oxide at low temperature for the oxygen reduction reaction. Chemical Communications, 2017, 53 (5): 873–876

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chemical Society Reviews, 2014, 43(20): 7067–7098

    Article  CAS  PubMed  Google Scholar 

  50. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of Ndoped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758

    Article  CAS  PubMed  Google Scholar 

  51. Vineesh T V, Kumar M P, Takahashi C, Kalita G, Alwarappan S, Pattanayak D K, Narayanan T N. Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide. Advanced Energy Materials, 2015, 5(17): 1500658–1500665

    Article  CAS  Google Scholar 

  52. Putri L K, Ng B J, Ong W J, Lee H W, Chang W S, Chai S P. Heteroatom nitrogen- and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution. ACS Applied Materials & Interfaces, 2017, 9(5): 4558–4569

    Article  CAS  Google Scholar 

  53. Fang Y, Wang X. Metal-free boron-containing heterogeneous catalysts. Angewandte Chemie International Edition, 2017, 56(49): 15506–15518

    Article  CAS  PubMed  Google Scholar 

  54. Yu C, Liu Z, Meng X, Lu B, Cui D, Qiu J. Nitrogen and phosphorus dual-doped graphene as a metal-free high-efficiency electrocatalyst for triiodide reduction. Nanoscale, 2016, 8(40): 17458–17464

    Article  CAS  PubMed  Google Scholar 

  55. Xu J, Shui J, Wang J, Wang M, Liu H K, Dou S X, Jeon I Y, Seo J M, Baek J B, Dai L. Sulfur graphene nanostructured cathodes via ball-milling for highperformance lithium sulfur batteries. ACS Nano, 2014, 8(10): 10920–10930

    Article  CAS  PubMed  Google Scholar 

  56. Xu J, Jeon I Y, Seo J M, Dou S, Dai L, Baek J B. Edge-selectively halogenated graphene nanoplatelets (XGnPs, X = Cl, Br, or I) prepared by ball-milling and used as anode materials for lithiumion batteries. Advanced Materials, 2014, 26(43): 7317–7323

    Article  CAS  PubMed  Google Scholar 

  57. Xu J, Ma J, Fan Q, Guo S, Dou S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Advanced Materials, 2017, 29(28): 1606454–1606473

    Article  CAS  Google Scholar 

  58. Xiang Z, Cao D, Huang L, Shui J, Wang M, Dai L. Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction. Advanced Materials, 2014, 26(2): 3315–3320

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Dai L. Nitrogen, phosphorus, and fluorine tri-doped graphene as a multifunctional catalyst for self-powered electrochemical water splitting. Angewandte Chemie International Edition, 2016, 55(42): 13296–13300

    Article  CAS  PubMed  Google Scholar 

  60. Du R, Zhao Q, Zhang N, Zhang J. Macroscopic carbon nanotubebased 3D monoliths. Small, 2015, 11(27): 3263–3289

    Article  CAS  PubMed  Google Scholar 

  61. Worsley M A, Charnvanichborikarn S, Montalvo E, Shin S J, Tylski E D, Lewicki J P, Nelson A J, Satcher J H Jr, Biener J, Baumann T F, et al. Toward macroscale, isotropic carbons with graphene-sheet-like electrical and mechanical properties. Advanced Functional Materials, 2014, 24(27): 4259–4264

    Article  CAS  Google Scholar 

  62. Charon E, Rouzaud J N, Aléon J. Graphitization at low temperatures (600–1200 °C) in the presence of iron implications in planetology. Carbon, 2014, 66: 178–190

    Article  CAS  Google Scholar 

  63. Xia J, Zhang N, Chong S, Li D, Chen Y, Sun C. Three-dimensional porous graphene-like sheets synthesized from biocarbon via lowtemperature graphitization for a supercapacitor. Green Chemistry, 2018, 20(3): 694–700

    Article  CAS  Google Scholar 

  64. Wang H, Li X B, Gao L, Wu H L, Yang J, Cai L, Ma T B, Tung C H, Wu L Z, Yu G. Three-dimensional graphene networks with abundant sharp edge sites for efficient electrocatalytic hydrogen evolution. Angewandte Chemie International Edition, 2018, 57(1): 192–197

    Article  CAS  PubMed  Google Scholar 

  65. Ren H, Tang M, Guan B, Wang K, Yang J, Wang F, Wang M, Shan J, Chen Z, Wei D, et al. Hierarchical graphene foam for effcient omnidirectional solar-thermal energy conversion. Advanced Materials, 2017, 29(38): 1702590–1702596

    Article  CAS  Google Scholar 

  66. Shao Y, El-Kady M F, Lin C W, Zhu G, Marsh K L, Hwang J Y, Zhang Q, Li Y, Wang H, Kaner R B. 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Advanced Materials, 2016, 28(31): 6719–6726

    Article  CAS  PubMed  Google Scholar 

  67. Compton B G, Lewis J A. 3D-printing of lightweight cellular composites. Advanced Materials, 2014, 26(34): 5930–5935

    Article  CAS  PubMed  Google Scholar 

  68. Zhu C, Han T Y, Duoss E B, Golobic A M, Kuntz J D, Spadaccini C M, Worsley M A. Highly compressible 3D periodic graphene aerogel microlattices. Nature Communications, 2015, 6(1): 6962–6969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sha J, Li Y, Salvatierra R V, Wang T, Dong P, Ji Y, Lee S K, Zhang C, Zhang J, Smith R H, et al. Three-dimensional printed graphene foams. ACS Nano, 2017, 11(7): 6860–6867

    Article  CAS  PubMed  Google Scholar 

  70. Qi W, Yan P, Su D S. Oxidative dehydrogenation on nanocarbon: Insights into the reaction mechanism and kinetics via in situ experimental methods. Accounts of Chemical Research, 2018, 51 (3): 640–648

    Article  CAS  PubMed  Google Scholar 

  71. Guo X, Qi W, Liu W, Yan P, Li F, Liang C, Su D S. Oxidative dehydrogenation on nanocarbon: Revealing the catalytic mechanism using model catalysts. ACS Catalysis, 2017, 7(2): 1424–1427

    Article  CAS  Google Scholar 

  72. Liu W, Chen B, Duan X, Wu K H, Qi W, Guo X, Zhang B, Su D S. Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions. ACS Catalysis, 2017, 7(9): 5820–5827

    Article  CAS  Google Scholar 

  73. Yang X, Cao Y, Yu H, Huang H, Wang H, Peng F. Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Catalysis Science & Technology, 2017, 7(9): 4431–4443

    Article  CAS  Google Scholar 

  74. Yang J H, Sun G, Gao Y, Zhao H, Tang P, Tan J, Lu A H, Ma D. Direct catalytic oxidation of benzene to phenol over metal-free graphene-based catalyst. Energy & Environmental Science, 2013, 6(3): 793–798

    Article  CAS  Google Scholar 

  75. Indrawirawan S, Sun H, Duan X, Wang S. Low temperature combustion synthesis of nitrogen-doped graphene for metal-free catalytic oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3432–3440

    Article  CAS  Google Scholar 

  76. Duan X, O’Donnell K, Sun H, Wang Y, Wang S. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions. Small, 2015, 11(25): 3036–3044

    Article  CAS  PubMed  Google Scholar 

  77. Huang Z F, Bao H W, Yao Y Y, Lu W Y, Chen W X. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst. Applied Catalysis B: Environmental, 2014, 154: 36–43

    Article  CAS  Google Scholar 

  78. Diao J, Liu H, Wang J, Feng Z, Chen T, Miao C, Yang W, Su D S. Porous graphene-based material as an efficient metal free catalyst for the oxidative dehydrogenation of ethylbenzene to styrene. Chemical Communications, 2015, 51(16): 3423–3425

    Article  CAS  PubMed  Google Scholar 

  79. Dhakshinamoorthy A, Latorre-Sanchez M, Asiri A M, Primo A, Garcia H. Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 2015, 65: 10–13

    Article  CAS  Google Scholar 

  80. Gonçalves G B, Pires S G, Simoes M Q, Nevesb M S, Marques P P. Three-dimensional graphene oxide: A promising green and sustainable catalyst for oxidation reactions at room temperature. Chemical Communications, 2014, 50(57): 7673–7676

    Article  PubMed  Google Scholar 

  81. Long J, Xie X, Xu J, Gu Q, Chen L, Wang X. Nitrogen-doped graphene nanosheets as metal-free catalysts for aerobic selective oxidation of benzylic alcohols. ACS Catalysis, 2012, 2(4): 622–631

    Article  CAS  Google Scholar 

  82. Rizescu C, Podolean I, Albero J, Parvulescu V I, Coman S M, Bucur C, Puchec M. Garcia H. N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chemistry, 2017, 19(8): 1999–2005

    Article  CAS  Google Scholar 

  83. Gu Q, Wen G, Ding Y, Wu K H, Chen C, Su D. Reduced graphene oxide: A metal-free catalyst for aerobic oxidative desulfurization. Green Chemistry, 2017, 19(4): 1175–1181

    Article  CAS  Google Scholar 

  84. Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A. Kinetic analysis of the catalytic reduction of 4 nitrophenol by metallic nanoparticles. Journal of Physical Chemistry C, 2014, 118(32): 18618–18625

    Article  CAS  Google Scholar 

  85. Wang Z, Su R, Wang D, Shi J, Wang J X, Pu Y, Chen J F. Sulfurized graphene as efficient metal-free catalysts for reduction of 4-nitrophenol to 4-aminophenol. Industrial & Engineering Chemistry Research, 2017, 56(46): 13610–13617

    Article  CAS  Google Scholar 

  86. Liu J, Yan X, Wang L, Kong L, Jian P. Three-dimensional nitrogen-doped graphene foam as metal-free catalyst for the hydrogenation reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2017, 497: 102–107

    Article  CAS  PubMed  Google Scholar 

  87. Pan J, Song S, Li J, Wang F, Ge X, Yao S, Wang X, Zhang H. Solid ion transition route to 3D S-N-codoped hollow carbon nanosphere/graphene aerogel as a metal-free handheld nanocatalyst for organic reactions. Nano Research, 2017, 10(10): 3486–3495

    Article  CAS  Google Scholar 

  88. Qiu B, Xing M, Zhang J. Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47(6): 2165–2216

    Article  CAS  PubMed  Google Scholar 

  89. Wang Z, Pu Y, Wang D, Shi J, Wang J X, Chen J F. 3D-foamstructured nitrogen-doped graphene-Ni catalyst for highly efficient nitrobenzene reduction. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(4): 1330–1338

    Article  CAS  Google Scholar 

  90. Gao Y, Ma D, Wang C, Guan J, Bao X. Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47(8): 2432–2434

    Article  CAS  PubMed  Google Scholar 

  91. Yang F, Chi C, Wang C, Wang Y, Li Y. High graphite N content in nitrogen-doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chemistry, 2016, 18(15): 4254–4262

    Article  CAS  Google Scholar 

  92. Hu F, Patel M, Luo F, Flach C, Mendelsohn R, Garfunkel E, He H, Szostak M. Graphene-catalyzed direct friedel-crafts alkylation reactions: mechanism, selectivity, and synthetic utility. Journal of the American Chemical Society, 2015, 137(45): 14473–14480

    Article  CAS  PubMed  Google Scholar 

  93. Gao Y, Tang P, Zhou H, Zhang W, Yang H, Yan N, Hu G, Mei D, Wang J, Ma D. Graphene oxide catalyzed C–H bond activation: The importance of oxygen functional groups for biaryl construction. Angewandte Chemie, 2016, 128(9): 3176–3180

    Article  Google Scholar 

  94. Yang A, Li J, Zhang C, Zhang W, Ma N. One-step amine modification of graphene oxide to get a green trifunctional metalfree catalyst. Applied Surface Science, 2015, 346: 443–450

    Article  CAS  Google Scholar 

  95. Li X H, Antonietti M. Polycondensation of boron- and nitrogencodoped holey graphene monoliths from molecules: Carbocatalysts for selective oxidation. Angewandte Chemie, 2013, 52(17): 4670–4674

    Article  Google Scholar 

  96. Yang F, Fan X, Wang C, Yang W, Hou L, Xu X, Feng A, Dong S, Chen K, Wang Y, et al. P-doped nanomesh graphene with highsurface-area as an efficient metal-free catalyst for aerobic oxidative coupling of amines. Carbon, 2017, 121: 443–451

    Article  CAS  Google Scholar 

  97. Lan D H, Chen L, Au C T, Yin S F. One-pot synthesized multifunctional graphene oxide as a water-tolerant and efficient metalfree heterogeneous catalyst for cycloaddition reaction. Carbon, 2015, 93: 22–31

    Article  CAS  Google Scholar 

  98. Lacroix M, Dreibine L, Tymowski B, Vigneron F, Edouard D, Bégin D, Nguyen P, Pham C, Savin-Poncet S, Luck F, Ledoux M J, Pham-Huu C. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-ropsch synthesis catalyst. Applied Catalysis A, General, 2011, 397(1): 62–72

    Article  CAS  Google Scholar 

  99. Li X, Pan X, Yu L, Ren P, Wu X, Sun L, Jiao F, Bao X. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nature Communications, 2014, 5(1): 3688–3694

    Article  CAS  PubMed  Google Scholar 

  100. Haase S, Weiss M, Langsch R, Bauer T, Lange R. Hydrodynamics and mass transfer in three-phase composite minichannel fixed-bed reactors. Chemical Engineering Science, 2013, 94(5): 224–236

    Article  CAS  Google Scholar 

  101. Leung P C, Recasens F, Smith J M. Hydration of isobutene in a trickle-bed reactor: Wetting efficiency and mass transfer. AIChE Journal. American Institute of Chemical Engineers, 1987, 33(6): 996–1007

    Article  CAS  Google Scholar 

  102. Leveneur S, Wärnå J, Salmi T, Murzin D Y, Estel L. Interaction of intrinsic kinetics and internal mass transfer in porous ion-exchange catalysts: Green synthesis of peroxycarboxylic acids. Chemical Engineering Science, 2009, 64(19): 4101–4114

    Article  CAS  Google Scholar 

  103. Chu G W, Song Y J, Zhang WJ, Luo Y, Zou H K, Xiang Y, Chen J F. Micromixing efficiency enhancement in a rotating packed bed reactor with surface-modified nickel foam packing. Industrial & Engineering Chemistry Research, 2015, 54(5): 1697–1702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 21620102007 and 21622601), the Fundamental Research Funds for the Central Universities of China (No. BUCTRC201601), and the “111” project of China (No. B14004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Pu, Y., Wang, D. et al. Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals. Front. Chem. Sci. Eng. 12, 855–866 (2018). https://doi.org/10.1007/s11705-018-1722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1722-y

Keywords

Navigation