Advertisement

Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths

  • Hanbin Zheng
  • Christine Picard
  • Serge Ravaine
Research Article
  • 30 Downloads

Abstract

Nanostructured metal surfaces have been known to exhibit properties that deviate from that of the bulk material. By simply modifying the texture of a metal surface, various unique optical properties can be observed. In this paper, we present a simple two step electrochemical process combining electrodeposition and anodization to generate black gold surfaces. This process is simple, versatile and up-scalable for the production of large surfaces. The black gold films have remarkable optical behavior as they absorb more than 93% of incident light over the entire visible spectrum and also exhibit no specular reflectance. A careful analysis by scanning electron microscopy reveals that these unique optical properties are due to their randomly rough surface, as they consist in a forest of dendritic microstructures with a nanoscale roughness. This new type of black films can be fabricated to a large variety of substrates, turning them to super absorbers with potential applications in photovoltaic solar cells or highly sensitive detectors and so on.

Keywords

nanostructuration light absorption coating gold electrodeposition anodization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thoman A, Kern A, Helm H, Walther M. Nanostructured gold films as broadband terahertz antireflection coatings. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(19): 195405CrossRefGoogle Scholar
  2. 2.
    Vorobyev A Y, Guo C. Enhanced absorptance of gold following multipulse femtosecond laser ablation. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(19): 195422CrossRefGoogle Scholar
  3. 3.
    Harris L, McGinnies R T, Siegel B M. The preparation and optical properties of gold blacks. Journal of the Optical Society of America, 1948, 38(7): 582–589CrossRefGoogle Scholar
  4. 4.
    Hutley M C, Maystre D. The total absorption of light by a diffraction grating. Optics Communications, 1976, 19(3): 431–436CrossRefGoogle Scholar
  5. 5.
    Hartman N F, Gaylord T K. Antireflection gold surface-relief gratings: Experimental characteristics. Applied Optics, 1988, 27 (17): 3738–3743CrossRefGoogle Scholar
  6. 6.
    Kravets V G, Schedin F, Grigorenko A N. Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(20): 205405CrossRefGoogle Scholar
  7. 7.
    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J. Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402CrossRefGoogle Scholar
  8. 8.
    Xiong X, Jiang S C, Hu Y H, Peng R W, Wang M. Structured metal film as a perfect absorber. Advanced Materials, 2013, 25(29): 3994–4000CrossRefGoogle Scholar
  9. 9.
    Zheng H, Vallée R, Almeida R M, Rivera T, Ravaine S. Quasiomnidirectional total light absorption in nanostructured gold surfaces. Optical Materials Express, 2014, 4(6): 1236–1242CrossRefGoogle Scholar
  10. 10.
    Toma M, Loget G, Corn R M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Letters, 2013, 13(12): 6164–6169CrossRefGoogle Scholar
  11. 11.
    Alici K B, Bilotti F, Vegni L, Ozbay E. Experimental verification of metamaterial based subwavelength microwave absorbers. Journal of Applied Physics, 2010, 108(8): 083113CrossRefGoogle Scholar
  12. 12.
    Cheng Y H, Yang H. Design, simulation, and measurement of metamaterial absorber. Microwave and Optical Technology Letters, 2010, 52(4): 877–880CrossRefGoogle Scholar
  13. 13.
    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S. Conformal dualband near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 2011, 5(6): 4641–4647CrossRefGoogle Scholar
  14. 14.
    Liu X, Starr T, Starr A F, Padilla W J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Physical Review Letters, 2010, 104(20): 207403CrossRefGoogle Scholar
  15. 15.
    Hao J, Wang J, Liu X, Padilla W J, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Applied Physics Letters, 2010, 96(25): 251104CrossRefGoogle Scholar
  16. 16.
    Zheng H, Vallée R, Almeida R M, Rivera T, Ravaine S. Quasi-total omnidirectional light absorption in nanostructured gold films. Applied Physics. A, Materials Science & Processing, 2014, 117 (2): 471–475CrossRefGoogle Scholar
  17. 17.
    Vorobyev A Y, Guo C. Colorizing metals with femtosecond laser pulses. Applied Physics Letters, 2008, 92(4): 041914CrossRefGoogle Scholar
  18. 18.
    Zheng H, Almeida R M, Rivera T, Ravaine S. Fabrication of broadband omnidirectional non-reflective gold surfaces by electrodeposition. Advanced Device Materials, 2015, 1(1): 11–16CrossRefGoogle Scholar
  19. 19.
    Nishio K, Masuda H. Anodization of gold in oxalate solution to form a nanoporous black film. Angewandte Chemie International Edition, 2011, 50(7): 1603–1607CrossRefGoogle Scholar
  20. 20.
    Grillo R, Torrisi V, Ruffino F. An experimental study on the porosity of dealloyed AuAg leafs. Superlattices and Microstructures, 2016, 100: 780–791CrossRefGoogle Scholar
  21. 21.
    Abdelaziz R, Disci-Zayed D, Hedayati M K, Pöhls J H, Zillohu A U, Erkartal B, Chakravadhanula V S K, Duppel V, Kienle L, Elbahri M. Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nature Communications, 2013, 4: 2400CrossRefGoogle Scholar
  22. 22.
    Maradudin A A. Light Scattering and Nanoscale Surface Roughness. Berlin: Springer, 2011Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS, CRPP, UMR 5031Université de BordeauxPessacFrance

Personalised recommendations