Frontiers of Chemical Science and Engineering

, Volume 12, Issue 3, pp 440–449 | Cite as

Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction

  • Dong Yang
  • Xiaoyan Zou
  • Yuanyuan Sun
  • Zhenwei Tong
  • Zhongyi Jiang
Research Article


In recent years, much effort has been focused on the development of the photocatalysts with high performance under visible light irradiation. In this paper, three-dimensional porous La-doped SrTiO3 (LST) microspheres were prepared by a modified sol–gel method, in which the agarose gel/SrCO3 microsphere and La2O3 were employed as the template and the La resource, respectively. The as-prepared LST microspheres exhibit a porous structure with a diameter of about 10 μm and a surface pore size of about 100 nm. The La element was doped into the crystal lattice of SrTiO3 by the substitution of La3+ for Sr2+. Therefore, the absorption edge of LST samples shifts toward the visible light region, and their photocatalytic activity for the Cr(VI) reduction is enhanced under visible light. Among all LST samples, LST-0.5 (the La3+ doping content is 0.5 wt-%) exhibited the highest visible-light photocatalytic activity, which can reduce 84% Cr(VI) within 100 min. This LST materials may become a promising photocatalyst for the facile treatment of wastewater containing poisonous heavy metal ions.


SrTiO3 La3+ doping porous microsphere visible-light photocatalysis Cr(VI) reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the financial support from the Program of Introducing Talents of Discipline to Universities (No. B06006), the National Natural Science Foundation of China (Grant Nos. 21621004 and 21406163), the Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCQNJC10000), the National Basic Research Program of China (No. 2009CB724705), and the National Science Fund for Distinguished Young Scholars (No. 21125627).


  1. 1.
    Chen X B, Liu L, Yu P Y, Mao S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750CrossRefGoogle Scholar
  2. 2.
    Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189CrossRefGoogle Scholar
  3. 3.
    Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges. Advanced Materials, 2012, 43(10): 229–251CrossRefGoogle Scholar
  4. 4.
    Liu S Q, Yang M Q, Tang Z R, Xu Y J. A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale, 2014, 6(13): 7193–7198CrossRefGoogle Scholar
  5. 5.
    Lan Y C, Lu Y L, Ren Z F. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2013, 2(5): 1031–1045CrossRefGoogle Scholar
  6. 6.
    Li J T, Cushing S K, Bright J, Meng F K, Senty T R, Zheng P, Bristow A D, Wu N Q. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catalysis, 2013, 3(1): 47–51CrossRefGoogle Scholar
  7. 7.
    Xu H, Ouyang S X, Liu L Q, Reunchan P, Umezawa N, Ye J H. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12642–12661CrossRefGoogle Scholar
  8. 8.
    Hamad S, Hernandez N C, Aziz A, Ruiz-Salvador A R, Caleroa S, Grau-Crespo R. Electronic structure of porphyrin-based metalorganic frameworks and their suitability for solar fuel production photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23458–23465CrossRefGoogle Scholar
  9. 9.
    Shi J W, Guo L J. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 2012, 22(6): 592–615CrossRefGoogle Scholar
  10. 10.
    Kuang Q, Yang S H. Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 2013, 5(9): 3683–3690CrossRefGoogle Scholar
  11. 11.
    Wang B, Shen S H, Guo L J. SrTiO3 single crystals enclosed with high-indexed (023) facets and (001) facets for photocatalytic hydrogen and oxygen evolution. Applied Catalysis B: Environmental, 2015, 166–167: 320–326CrossRefGoogle Scholar
  12. 12.
    Ouyang S, Li P, Xu H, Tong H, Liu L Q, Ye J H. Bifunctionalnanotemplate assisted synthesis of nanoporous SrTiO3 photocatalysts toward efficient degradation of organic pollutant. ACS Applied Materials & Interfaces, 2014, 6(24): 22726–22732CrossRefGoogle Scholar
  13. 13.
    Wang J S, Yin S, Zhang Q W, Saito F, Sato T. Mechanochemical synthesis of SrTiO3–xFx with high visible light photocatalytic activities for nitrogen monoxide destruction. Journal of Materials Chemistry, 2003, 13(9): 2348–2352CrossRefGoogle Scholar
  14. 14.
    Zhang Y B, Zhong L, Duan D P. Single-step hydrothermal synthesis of strontium titanate nanoparticles from crystalline anatase titanium dioxide. Ceramics International, 2015, 41(10): 13516–13524CrossRefGoogle Scholar
  15. 15.
    Irie H, Maruyama Y, Hashimoto K. Ag+- and Pb2+-doped SrTiO3 photocatalysts: A correlation between band structure and photocatalytic activity. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2007, 111(4): 1847–1852Google Scholar
  16. 16.
    Zou J P, Zhang L Z, Luo S L, Leng L H, Luo X B, Zhang M J, Luo Y, Guo G C. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. International Journal of Hydrogen Energy, 2012, 37(22): 17068–17077CrossRefGoogle Scholar
  17. 17.
    Kou J H, Gao J, Li Z S, Yu H, Zhou Y, Zou Z G. Construction of visible-light-responsive SrTiO3 with enhanced CO2 adsorption ability: Highly efficient photocatalysts for artificial photosynthesis. Catalysis Letters, 2015, 145(2): 640–646CrossRefGoogle Scholar
  18. 18.
    Sukpanish P, Lertpanyapornchai B, Yokoi T, Ngamcharussrivichai C. Lanthanum-doped mesostructured strontium titanates synthesized via sol-gel combustion route using citric acid as complexing agent. Materials Chemistry and Physics, 2016, 181: 422–431CrossRefGoogle Scholar
  19. 19.
    Marshall M S J, Newell D T, Payne D J, Egdell R G, Castell M R. Atomic and electronic surface structures of dopants in oxides: STM and XPS of Nb- and La-doped SrTiO3 (001). Physical Review B: Condensed Matter and Materials Physics, 2011, 83(3): 035410CrossRefGoogle Scholar
  20. 20.
    Wang J S, Yin S, Komats M, Zhang Q W, Saito F, Sato T. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A Chemistry, 2004, 165(1): 149–156CrossRefGoogle Scholar
  21. 21.
    Wang J S, Yin S, Komatsu M, Zhang Q W, Saito F, Sato T. Photooxidation properties of nitrogen doped SrTiO3 made by mechanical activation. Applied Catalysis B: Environmental, 2004, 52(1): 11–21CrossRefGoogle Scholar
  22. 22.
    Ohno T, Tsubota T, Nakamura Y, Sayama K. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Applied Catalysis A, General, 2005, 288(1–2): 74–79CrossRefGoogle Scholar
  23. 23.
    Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T. Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35(22): 12428–12442CrossRefGoogle Scholar
  24. 24.
    Townsend T K, Browning N D, Osterloh F E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano, 2012, 6(8): 7420–7426CrossRefGoogle Scholar
  25. 25.
    Xue C, An H, Yan X Q, Li J L, Yang B L, Wei J, Yang G D. Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-lightdriven hydrogen evolution. Nano Energy, 2017, 39: 513–523CrossRefGoogle Scholar
  26. 26.
    Lin B, Li H, An H, Hao W B, Wei J, Dai Y Z, Ma C S, Yang G D. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 542–552CrossRefGoogle Scholar
  27. 27.
    Xue C, Yan X Q, An H, Li H, Wei J, Yang G D. Bonding CdS-Sn2S3 eutectic clusters on graphene nanosheets with unusually photoreaction- driven structural reconfiguration effect for excellent H2 evolution and Cr(VI) reduction. Applied Catalysis B: Environmental, 2018, 222: 157–166CrossRefGoogle Scholar
  28. 28.
    Kanhere P, Chen Z. A review on visible light active perovskitebased photocatalysts. Molecules (Basel, Switzerland), 2014, 19(12): 19995–20022CrossRefGoogle Scholar
  29. 29.
    Schultz A M, Brown T D, Ohodnicki P R. Optical and chemiresistive sensing in extreme environments: La-doped SrTiO3 films for hydrogen sensing at high temperatures. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 119(11): 6211–6220Google Scholar
  30. 30.
    Miyauchi M, Takashio M, Tobimatsu H. Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. Langmuir, 2004, 20(1): 232–236CrossRefGoogle Scholar
  31. 31.
    Lin B, Yang G D, Yang B L, Zhao Y X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016, 198(3): 276–285CrossRefGoogle Scholar
  32. 32.
    Lin B, An H, Yan X Q, Zhang T X, Wei J J, Yang G D. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 210: 173–183CrossRefGoogle Scholar
  33. 33.
    Pan J H, Cai Z C, Yu Y, Zhao X S. Controllable synthesis of mesoporous F-TiO2 spheres for effective photocatalysis. Journal of Materials Chemistry, 2011, 21(30): 11430–11438CrossRefGoogle Scholar
  34. 34.
    Pan J H, Zhang X, Du Alan J, Sun D D, Leckie J O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. Journal of the American Chemical Society, 2008, 130(34): 11256–11257CrossRefGoogle Scholar
  35. 35.
    Huang Y, Gao Y X, Zhang Q, Cao J J, Huang R J, Ho WK, Lee S C. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NOx removal studies. Applied Catalysis A, General, 2016, 515: 170–178CrossRefGoogle Scholar
  36. 36.
    Yang D, Sun Y Y, Tong Z W, Nan Y H, Jiang Z Y. Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight. Journal of Hazardous Materials, 2016, 312: 45–54CrossRefGoogle Scholar
  37. 37.
    Shi L, Wang T, Zhang H B, Chang K, Meng X G, Liu H M, Ye J H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2(3): 1500006Google Scholar
  38. 38.
    Zheng Z K, Huang B B, Qin X Y, Zhang X Y, Dai Y, Jiang M H, Wang P, Whangbo M H. Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive (001) facets. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(46): 12576–12579Google Scholar
  39. 39.
    Qin Y, Wang G Y, Wang Y J. Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen. Catalysis Communications, 2007, 8(6): 926–930CrossRefGoogle Scholar
  40. 40.
    Chen X, Cheng J P, Shou Q L, Liu F, Zhang X B. Effect of calcination temperature on the porous structure of cobalt oxide micro-flowers. CrystEngComm, 2012, 14(4): 1271–1276CrossRefGoogle Scholar
  41. 41.
    Pan J H, Shen C, Ivanova I, Zhou N, Wang X Z, Tan W C, Xu Q H, Bahnemann D W, Wang Q. Self-template synthesis of porous perovskite titanate solid and hollow submicrospheres for photocatalytic oxygen evolution and mesoscopic solar cells. ACS Applied Materials & Interfaces, 2015, 7(27): 14859–14869CrossRefGoogle Scholar
  42. 42.
    Li H Q, Cui Y M, Wu X C, Hong W S, Hua L. Effect of La contents on the structure and photocatalytic activity of La-SrTiO3 catalysts. Chinese Journal of Inorganic Chemistry, 2012, 28(12): 2597–2604Google Scholar
  43. 43.
    Zhang J Y, Zhao Z Y, Wang X Y, Yu T, Guan J, Yu Z T, Li Z S, Zou Z G. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(43): 18396–18400CrossRefGoogle Scholar
  44. 44.
    Yao S H, Jia X Y, Jiao L L, Zhu C, Shi Z L. La-doped TiO2 hollow fibers and their photocatalytic activity under UV and visible light. Indian Journal of Chemistry, 2012, 51(8): 1049–1056Google Scholar
  45. 45.
    Marina O A, Canfield N L, Stevenson J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 2002, 149(1): 21–28CrossRefGoogle Scholar
  46. 46.
    Zhou X, Zhang X N, Feng X B, Zhou J, Zhou S Q. Preparation of a La/N co-doped TiO2 film electrode with visible light response and its photoelectrocatalytic activity on a Ni substrate. Dyes and Pigments, 2016, 125(12): 375–383CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Zhao Z Y, Chen J R, Cheng L, Chang J, Sheng WC, Hu C Y, Cao S S. C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2015, 165: 715–722CrossRefGoogle Scholar
  48. 48.
    Ng J W, Xu S P, Zhang X W, Yang H Y, Sun D D. Hybridized nanowires and cubes: A novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Advanced Functional Materials, 2010, 20(24): 4287–4294CrossRefGoogle Scholar
  49. 49.
    Wang C D, Qiu H, Inoue T, Yao Q W. Highly active SrTiO3 for visible light photocatalysis: A first-principles prediction. Solid State Communications, 2014, 181(3): 5–8CrossRefGoogle Scholar
  50. 50.
    Wang A, Shen S, Zhao Y, Wu W. Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities. Journal of Colloid and Interface Science, 2015, 445: 330–336CrossRefGoogle Scholar
  51. 51.
    Chen X, Ta P F, Zhou B H, Dong H G, Pan J, Xiong X. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2015, 647(2): 456–462CrossRefGoogle Scholar
  52. 52.
    Qiu B C, Zhong C C, Xing M Y, Zhang J L. Facile preparation of C-modified TiO2 supported on MCF for high visible-light-driven photocatalysis. RSC Advances, 2015, 5(23): 17802–17808CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dong Yang
    • 1
    • 2
  • Xiaoyan Zou
    • 1
    • 2
  • Yuanyuan Sun
    • 1
    • 2
  • Zhenwei Tong
    • 3
    • 4
  • Zhongyi Jiang
    • 3
    • 4
  1. 1.Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.School of Environmental Science and EngineeringTianjin UniversityTianjinChina
  3. 3.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  4. 4.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations