Skip to main content
Log in

Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, much effort has been focused on the development of the photocatalysts with high performance under visible light irradiation. In this paper, three-dimensional porous La-doped SrTiO3 (LST) microspheres were prepared by a modified sol–gel method, in which the agarose gel/SrCO3 microsphere and La2O3 were employed as the template and the La resource, respectively. The as-prepared LST microspheres exhibit a porous structure with a diameter of about 10 μm and a surface pore size of about 100 nm. The La element was doped into the crystal lattice of SrTiO3 by the substitution of La3+ for Sr2+. Therefore, the absorption edge of LST samples shifts toward the visible light region, and their photocatalytic activity for the Cr(VI) reduction is enhanced under visible light. Among all LST samples, LST-0.5 (the La3+ doping content is 0.5 wt-%) exhibited the highest visible-light photocatalytic activity, which can reduce 84% Cr(VI) within 100 min. This LST materials may become a promising photocatalyst for the facile treatment of wastewater containing poisonous heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen X B, Liu L, Yu P Y, Mao S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750

    Article  CAS  PubMed  Google Scholar 

  2. Nakata K, Fujishima A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 13(3): 169–189

    Article  CAS  Google Scholar 

  3. Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Nano-photocatalytic materials: Possibilities and challenges. Advanced Materials, 2012, 43(10): 229–251

    Article  CAS  Google Scholar 

  4. Liu S Q, Yang M Q, Tang Z R, Xu Y J. A nanotree-like CdS/ZnO nanocomposite with spatially branched hierarchical structure for photocatalytic fine-chemical synthesis. Nanoscale, 2014, 6(13): 7193–7198

    Article  CAS  PubMed  Google Scholar 

  5. Lan Y C, Lu Y L, Ren Z F. Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. Nano Energy, 2013, 2(5): 1031–1045

    Article  CAS  Google Scholar 

  6. Li J T, Cushing S K, Bright J, Meng F K, Senty T R, Zheng P, Bristow A D, Wu N Q. Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catalysis, 2013, 3(1): 47–51

    Article  CAS  Google Scholar 

  7. Xu H, Ouyang S X, Liu L Q, Reunchan P, Umezawa N, Ye J H. Recent advances in TiO2-based photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12642–12661

    Article  CAS  Google Scholar 

  8. Hamad S, Hernandez N C, Aziz A, Ruiz-Salvador A R, Caleroa S, Grau-Crespo R. Electronic structure of porphyrin-based metalorganic frameworks and their suitability for solar fuel production photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23458–23465

    Article  CAS  Google Scholar 

  9. Shi J W, Guo L J. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 2012, 22(6): 592–615

    Article  Google Scholar 

  10. Kuang Q, Yang S H. Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 2013, 5(9): 3683–3690

    Article  CAS  Google Scholar 

  11. Wang B, Shen S H, Guo L J. SrTiO3 single crystals enclosed with high-indexed (023) facets and (001) facets for photocatalytic hydrogen and oxygen evolution. Applied Catalysis B: Environmental, 2015, 166–167: 320–326

    Article  CAS  Google Scholar 

  12. Ouyang S, Li P, Xu H, Tong H, Liu L Q, Ye J H. Bifunctionalnanotemplate assisted synthesis of nanoporous SrTiO3 photocatalysts toward efficient degradation of organic pollutant. ACS Applied Materials & Interfaces, 2014, 6(24): 22726–22732

    Article  CAS  Google Scholar 

  13. Wang J S, Yin S, Zhang Q W, Saito F, Sato T. Mechanochemical synthesis of SrTiO3–xFx with high visible light photocatalytic activities for nitrogen monoxide destruction. Journal of Materials Chemistry, 2003, 13(9): 2348–2352

    Article  CAS  Google Scholar 

  14. Zhang Y B, Zhong L, Duan D P. Single-step hydrothermal synthesis of strontium titanate nanoparticles from crystalline anatase titanium dioxide. Ceramics International, 2015, 41(10): 13516–13524

    Article  CAS  Google Scholar 

  15. Irie H, Maruyama Y, Hashimoto K. Ag+- and Pb2+-doped SrTiO3 photocatalysts: A correlation between band structure and photocatalytic activity. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2007, 111(4): 1847–1852

    CAS  Google Scholar 

  16. Zou J P, Zhang L Z, Luo S L, Leng L H, Luo X B, Zhang M J, Luo Y, Guo G C. Preparation and photocatalytic activities of two new Zn-doped SrTiO3 and BaTiO3 photocatalysts for hydrogen production from water without cocatalysts loading. International Journal of Hydrogen Energy, 2012, 37(22): 17068–17077

    Article  CAS  Google Scholar 

  17. Kou J H, Gao J, Li Z S, Yu H, Zhou Y, Zou Z G. Construction of visible-light-responsive SrTiO3 with enhanced CO2 adsorption ability: Highly efficient photocatalysts for artificial photosynthesis. Catalysis Letters, 2015, 145(2): 640–646

    Article  CAS  Google Scholar 

  18. Sukpanish P, Lertpanyapornchai B, Yokoi T, Ngamcharussrivichai C. Lanthanum-doped mesostructured strontium titanates synthesized via sol-gel combustion route using citric acid as complexing agent. Materials Chemistry and Physics, 2016, 181: 422–431

    Article  CAS  Google Scholar 

  19. Marshall M S J, Newell D T, Payne D J, Egdell R G, Castell M R. Atomic and electronic surface structures of dopants in oxides: STM and XPS of Nb- and La-doped SrTiO3 (001). Physical Review B: Condensed Matter and Materials Physics, 2011, 83(3): 035410

    Article  CAS  Google Scholar 

  20. Wang J S, Yin S, Komats M, Zhang Q W, Saito F, Sato T. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A Chemistry, 2004, 165(1): 149–156

    Article  CAS  Google Scholar 

  21. Wang J S, Yin S, Komatsu M, Zhang Q W, Saito F, Sato T. Photooxidation properties of nitrogen doped SrTiO3 made by mechanical activation. Applied Catalysis B: Environmental, 2004, 52(1): 11–21

    Article  CAS  Google Scholar 

  22. Ohno T, Tsubota T, Nakamura Y, Sayama K. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Applied Catalysis A, General, 2005, 288(1–2): 74–79

    Article  CAS  Google Scholar 

  23. Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong T. Hydrogen production from water splitting over Eosin Y-sensitized mesoporous-assembled perovskite titanate nanocrystal photocatalysts under visible light irradiation. International Journal of Hydrogen Energy, 2010, 35(22): 12428–12442

    Article  CAS  Google Scholar 

  24. Townsend T K, Browning N D, Osterloh F E. Nanoscale strontium titanate photocatalysts for overall water splitting. ACS Nano, 2012, 6(8): 7420–7426

    Article  CAS  PubMed  Google Scholar 

  25. Xue C, An H, Yan X Q, Li J L, Yang B L, Wei J, Yang G D. Spatial charge separation and transfer in ultrathin CdIn2S4/rGO nanosheet arrays decorated by ZnS quantum dots for efficient visible-lightdriven hydrogen evolution. Nano Energy, 2017, 39: 513–523

    Article  CAS  Google Scholar 

  26. Lin B, Li H, An H, Hao W B, Wei J, Dai Y Z, Ma C S, Yang G D. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 220: 542–552

    Article  CAS  Google Scholar 

  27. Xue C, Yan X Q, An H, Li H, Wei J, Yang G D. Bonding CdS-Sn2S3 eutectic clusters on graphene nanosheets with unusually photoreaction- driven structural reconfiguration effect for excellent H2 evolution and Cr(VI) reduction. Applied Catalysis B: Environmental, 2018, 222: 157–166

    Article  CAS  Google Scholar 

  28. Kanhere P, Chen Z. A review on visible light active perovskitebased photocatalysts. Molecules (Basel, Switzerland), 2014, 19(12): 19995–20022

    Article  CAS  Google Scholar 

  29. Schultz A M, Brown T D, Ohodnicki P R. Optical and chemiresistive sensing in extreme environments: La-doped SrTiO3 films for hydrogen sensing at high temperatures. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 119(11): 6211–6220

    CAS  Google Scholar 

  30. Miyauchi M, Takashio M, Tobimatsu H. Photocatalytic activity of SrTiO3 codoped with nitrogen and lanthanum under visible light illumination. Langmuir, 2004, 20(1): 232–236

    Article  CAS  PubMed  Google Scholar 

  31. Lin B, Yang G D, Yang B L, Zhao Y X. Construction of novel three dimensionally ordered macroporous carbon nitride for highly efficient photocatalytic activity. Applied Catalysis B: Environmental, 2016, 198(3): 276–285

    Article  CAS  Google Scholar 

  32. Lin B, An H, Yan X Q, Zhang T X, Wei J J, Yang G D. Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 210: 173–183

    Article  CAS  Google Scholar 

  33. Pan J H, Cai Z C, Yu Y, Zhao X S. Controllable synthesis of mesoporous F-TiO2 spheres for effective photocatalysis. Journal of Materials Chemistry, 2011, 21(30): 11430–11438

    Article  CAS  Google Scholar 

  34. Pan J H, Zhang X, Du Alan J, Sun D D, Leckie J O. Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. Journal of the American Chemical Society, 2008, 130(34): 11256–11257

    Article  CAS  PubMed  Google Scholar 

  35. Huang Y, Gao Y X, Zhang Q, Cao J J, Huang R J, Ho WK, Lee S C. Hierarchical porous ZnWO4 microspheres synthesized by ultrasonic spray pyrolysis: Characterization, mechanistic and photocatalytic NOx removal studies. Applied Catalysis A, General, 2016, 515: 170–178

    Article  CAS  Google Scholar 

  36. Yang D, Sun Y Y, Tong Z W, Nan Y H, Jiang Z Y. Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr(VI) reduction under simulated sunlight. Journal of Hazardous Materials, 2016, 312: 45–54

    Article  CAS  PubMed  Google Scholar 

  37. Shi L, Wang T, Zhang H B, Chang K, Meng X G, Liu H M, Ye J H. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2(3): 1500006

    Google Scholar 

  38. Zheng Z K, Huang B B, Qin X Y, Zhang X Y, Dai Y, Jiang M H, Wang P, Whangbo M H. Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive (001) facets. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(46): 12576–12579

    CAS  Google Scholar 

  39. Qin Y, Wang G Y, Wang Y J. Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen. Catalysis Communications, 2007, 8(6): 926–930

    Article  CAS  Google Scholar 

  40. Chen X, Cheng J P, Shou Q L, Liu F, Zhang X B. Effect of calcination temperature on the porous structure of cobalt oxide micro-flowers. CrystEngComm, 2012, 14(4): 1271–1276

    Article  CAS  Google Scholar 

  41. Pan J H, Shen C, Ivanova I, Zhou N, Wang X Z, Tan W C, Xu Q H, Bahnemann D W, Wang Q. Self-template synthesis of porous perovskite titanate solid and hollow submicrospheres for photocatalytic oxygen evolution and mesoscopic solar cells. ACS Applied Materials & Interfaces, 2015, 7(27): 14859–14869

    Article  CAS  Google Scholar 

  42. Li H Q, Cui Y M, Wu X C, Hong W S, Hua L. Effect of La contents on the structure and photocatalytic activity of La-SrTiO3 catalysts. Chinese Journal of Inorganic Chemistry, 2012, 28(12): 2597–2604

    CAS  Google Scholar 

  43. Zhang J Y, Zhao Z Y, Wang X Y, Yu T, Guan J, Yu Z T, Li Z S, Zou Z G. Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. Journal of Physical Chemistry C, 2010, 114(43): 18396–18400

    Article  CAS  Google Scholar 

  44. Yao S H, Jia X Y, Jiao L L, Zhu C, Shi Z L. La-doped TiO2 hollow fibers and their photocatalytic activity under UV and visible light. Indian Journal of Chemistry, 2012, 51(8): 1049–1056

    Google Scholar 

  45. Marina O A, Canfield N L, Stevenson J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics, 2002, 149(1): 21–28

    Article  CAS  Google Scholar 

  46. Zhou X, Zhang X N, Feng X B, Zhou J, Zhou S Q. Preparation of a La/N co-doped TiO2 film electrode with visible light response and its photoelectrocatalytic activity on a Ni substrate. Dyes and Pigments, 2016, 125(12): 375–383

    Article  CAS  Google Scholar 

  47. Zhang Y, Zhao Z Y, Chen J R, Cheng L, Chang J, Sheng WC, Hu C Y, Cao S S. C-doped hollow TiO2 spheres: In situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2015, 165: 715–722

    Article  CAS  Google Scholar 

  48. Ng J W, Xu S P, Zhang X W, Yang H Y, Sun D D. Hybridized nanowires and cubes: A novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Advanced Functional Materials, 2010, 20(24): 4287–4294

    Article  CAS  Google Scholar 

  49. Wang C D, Qiu H, Inoue T, Yao Q W. Highly active SrTiO3 for visible light photocatalysis: A first-principles prediction. Solid State Communications, 2014, 181(3): 5–8

    Article  CAS  Google Scholar 

  50. Wang A, Shen S, Zhao Y, Wu W. Preparation and characterizations of BiVO4/reduced graphene oxide nanocomposites with higher visible light reduction activities. Journal of Colloid and Interface Science, 2015, 445: 330–336

    Article  CAS  PubMed  Google Scholar 

  51. Chen X, Ta P F, Zhou B H, Dong H G, Pan J, Xiong X. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. Journal of Alloys and Compounds, 2015, 647(2): 456–462

    Article  CAS  Google Scholar 

  52. Qiu B C, Zhong C C, Xing M Y, Zhang J L. Facile preparation of C-modified TiO2 supported on MCF for high visible-light-driven photocatalysis. RSC Advances, 2015, 5(23): 17802–17808

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Program of Introducing Talents of Discipline to Universities (No. B06006), the National Natural Science Foundation of China (Grant Nos. 21621004 and 21406163), the Tianjin Research Program of Application Foundation and Advanced Technology (No. 15JCQNJC10000), the National Basic Research Program of China (No. 2009CB724705), and the National Science Fund for Distinguished Young Scholars (No. 21125627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zou, X., Sun, Y. et al. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction. Front. Chem. Sci. Eng. 12, 440–449 (2018). https://doi.org/10.1007/s11705-018-1700-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-018-1700-4

Keywords

Navigation