Advertisement

Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate

  • Zhe Yang
  • Xiaoyu Huang
  • Jianqiang Wang
  • Chuyang Y. Tang
Research Article

Abstract

Most commercial NF membranes are negatively charged at the pH range of a typical feed solution. In order to enhance the removal of cations (such as Mg2+ or Ca2+), we utilized polyethyleneimine (PEI) and trimesoyl chloride (TMC) to perform interfacial polymerization reaction on a polydopamine coated hydrolyzed polyacrylonitrile substrate to obtain a positively charged nanofiltration membrane. Effects of polydopamine coating time, PEI concentration, TMC reaction time and concentration on the membrane physicochemical properties and separation performance were systematically investigated using scanning electron microscopy, streaming potential and water contact angle measurements. The optimal NF membrane showed high rejection for divalent ions (93.6±2.6% for MgSO4, 92.4±1.3% for MgCl2, and 90.4±2.1% for Na2SO4), accompanied with NaCl rejection of 27.8±2.5% with a permeation flux of 17.2±2.8 L∙m–2∙h–1 at an applied pressure of 8 bar (salt concentrations were all 1000 mg∙L–1). The synthesized membranes showed promising potentials for the applications of water softening.

Keywords

nanofiltration polyethyleneimine trimesoyl chloride polydopamine positively charged rejection layer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors gratefully acknowledge the General Research Fund (Project number 17207514) by the Research Grants Council of Hong Kong. We also thank the partial support received from Strategic Research Theme (Clean Energy) and the Seed Grant for Basic Research (104003453) of the University of Hong Kong.

References

  1. 1.
    Hilal N, Al-Zoubi H, Darwish N A, Mohamma A W, Abu Arabi M. A comprehensive review of nanofiltration membranes: Treatment, pretreatment, modelling, and atomic force microscopy. Desalination, 2004, 170(3): 281–308CrossRefGoogle Scholar
  2. 2.
    Mohammad A W, Teow Y H, Ang W L, Chung Y T, Oatley-Radcliffe D L, Hilal N. Nanofiltration membranes review: Recent advances and future prospects. Desalination, 2015, 356: 226–254CrossRefGoogle Scholar
  3. 3.
    Ma X H, Yang Z, Yao Z K, Xu Z L, Tang C Y. A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 2017, 525: 269–276CrossRefGoogle Scholar
  4. 4.
    Werber J R, Osuji C O, Elimelech M. Materials for next-generation desalination and water purification membranes. Nature Review Materials, 2016, 1(5): 16018CrossRefGoogle Scholar
  5. 5.
    Li D, Wang H. Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 2010, 20(22): 4551–4566CrossRefGoogle Scholar
  6. 6.
    Luo J, Wan Y. Effects of pH and salt on nanofiltration—a critical review. Journal of Membrane Science, 2013, 438: 18–28CrossRefGoogle Scholar
  7. 7.
    Lau WJ, Ismail A F. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—a review. Desalination, 2009, 245(1–3): 321–348CrossRefGoogle Scholar
  8. 8.
    Liu T Y, Liu Z H, Zhang R X, Wang Y, Van der Bruggen B, Wang X L. Fabrication of a thin film nanocomposite hollow fiber nanofiltration membrane for wastewater treatment. Journal of Membrane Science, 2015, 488: 92–102CrossRefGoogle Scholar
  9. 9.
    Lin J, Tang C Y, Ye W, Sun S P, Hamdan S H, Volodin A, Van Haesendonck C, Sotto A, Luis P, Van der Bruggen B. Unraveling flux behavior of superhydrophilic loose nanofiltration membranes during textile wastewater treatment. Journal of Membrane Science, 2015, 493: 690–702CrossRefGoogle Scholar
  10. 10.
    Dong L X, Huang X C, Wang Z, Yang Z, Wang X M, Tang C Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Separation and Purification Technology, 2016, 166: 230–239CrossRefGoogle Scholar
  11. 11.
    Guo H, Deng Y, Yao Z K, Yang Z, Wang J Q, Lin C, Zhang T, Zhu B K, Tang C Y. A highly selective surface coating for enhanced membrane rejection of endocrine disrupting compounds: Mechanistic insights and implications. Water Research, 2017, 121: 197–203CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Amoudi A S, Farooque A M. Performance restoration and autopsy of NF membranes used in seawater pretreatment. Desalination, 2005, 178(1–3): 261–271CrossRefGoogle Scholar
  13. 13.
    Song Y, Su B, Gao X, Gao C. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system. Desalination, 2012, 296: 30–36CrossRefGoogle Scholar
  14. 14.
    Tang C Y, Zhao Y, Wang R, Hélix-Nielsen C, Fane A. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 2013, 308: 34–40CrossRefGoogle Scholar
  15. 15.
    Daer S, Kharraz J, Giwa A, Hasan S W. Recent applications of nanomaterials in water desalination: A critical review and future opportunities. Desalination, 2015, 367: 37–48CrossRefGoogle Scholar
  16. 16.
    Fane A G, Tang C, Wang R. Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. Treatise Water Science: Elsevier Science, 2011, 301–335Google Scholar
  17. 17.
    Lee K P, Arnot T C, Mattia D. A review of reverse osmosis membrane materials for desalination—development to date and future potential. Journal of Membrane Science, 2011, 370(1): 1–22CrossRefGoogle Scholar
  18. 18.
    Schaep J, Van der Bruggen B, Vandecasteele C, Wilms D. Influence of ion size and charge in nanofiltration. Separation and Purification Technology, 1998, 14(1): 155–162CrossRefGoogle Scholar
  19. 19.
    Li Y, Su Y, Li J, Zhao X, Zhang R, Fan X, Zhu J, Ma Y, Liu Y, Jiang Z. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine. Journal of Membrane Science, 2015, 476: 10–19CrossRefGoogle Scholar
  20. 20.
    Deng H, Xu Y, Chen Q, Wei X, Zhu B. High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. Journal of Membrane Science, 2011, 366(1–2): 363–372CrossRefGoogle Scholar
  21. 21.
    Bernstein R, Anton E, Ulbricht M. UV-photo graft functionalization of polyethersulfone membrane with strong polyelectrolyte hydrogel and its application for nanofiltration. ACS Applied Materials & Interfaces, 2012, 4(7): 3438–3446CrossRefGoogle Scholar
  22. 22.
    Wu D, Huang Y, Yu S, Lawless D, Feng X. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. Journal of Membrane Science, 2014, 472: 141–153CrossRefGoogle Scholar
  23. 23.
    Zhang R, Su Y, Zhao X, Li Y, Zhao J, Jiang Z. A novel positively charged composite nanofiltration membrane prepared by bioinspired adhesion of polydopamine and surface grafting of poly (ethylene imine). Journal of Membrane Science, 2014, 470: 9–17CrossRefGoogle Scholar
  24. 24.
    Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking. Journal of Membrane Science, 2015, 476: 50–58CrossRefGoogle Scholar
  25. 25.
    Qi S, Qiu C Q, Tang C Y. Synthesis and characterization of novel forward osmosis membranes based on layer-by-layer assembly. Environmental Science & Technology, 2011, 45(12): 5201–5208CrossRefGoogle Scholar
  26. 26.
    Yang Z, Wu Y, Wang J, Cao B, Tang C Y. In situ reduction of silver by polydopamine: A novel antimicrobial modification of a thin-film composite polyamide membrane. Environmental Science & Technology, 2016, 50(17): 9543–9550CrossRefGoogle Scholar
  27. 27.
    Yang Z, Yin J, Deng B. Enhancing water flux of thin-film nanocomposite (TFN) membrane by incorporation of bimodal silica nanoparticles. Aims Press Envrionmental Science, 2016, 3(2): 185–198CrossRefGoogle Scholar
  28. 28.
    Li M, Xu J, Chang C Y, Feng C, Zhang L, Tang Y, Gao C. Bioinspired fabrication of composite nanofiltration membrane based on the formation of DA/PEI layer followed by cross-linking. Journal of Membrane Science, 2014, 459: 62–71CrossRefGoogle Scholar
  29. 29.
    Fang W, Shi L, Wang R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening. Journal of Membrane Science, 2013, 430: 129–139CrossRefGoogle Scholar
  30. 30.
    Zhang G, Yan H, Ji S, Liu Z. Self-assembly of polyelectrolyte multilayer pervaporation membranes by a dynamic layer-by-layer technique on a hydrolyzed polyacrylonitrile ultrafiltration membrane. Journal of Membrane Science, 2007, 292(1): 1–8CrossRefGoogle Scholar
  31. 31.
    Guo H, Deng Y, Tao Z, Yao Z, Wang J, Lin C, Zhang T, Zhu B, Tang C Y. Does hydrophilic polydopamine coating enhance membrane rejection of hydrophobic endocrine-disrupting compounds? Environmental Science & Technology Letters, 2016, 3(9): 332–338CrossRefGoogle Scholar
  32. 32.
    Arena J T, McCloskey B, Freeman B D, McCutcheon J R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. Journal of Membrane Science, 2011, 375 (1): 55–62CrossRefGoogle Scholar
  33. 33.
    Li X L, Zhu L P, Jiang J H, Yi Z, Zhu B K, Xu Y Y. Hydrophilic nanofiltration membranes with self-polymerized and stronglyadhered polydopamine as separating layer. Chinese Journal of Polymer Science, 2012, 30(2): 152–163CrossRefGoogle Scholar
  34. 34.
    Zhao J, Su Y, He X, Zhao X, Li Y, Zhang R, Jiang Z. Dopamine composite nanofiltration membranes prepared by self-polymerization and interfacial polymerization. Journal of Membrane Science, 2014, 465: 41–48CrossRefGoogle Scholar
  35. 35.
    Wei J, Liu X, Qiu C, Wang R, Tang C Y. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. Journal of Membrane Science, 2011, 381(1): 110–117CrossRefGoogle Scholar
  36. 36.
    Freger V. Kinetics of film formation by interfacial polycondensation. Langmuir, 2005, 21(5): 1884–1894CrossRefPubMedGoogle Scholar
  37. 37.
    Shukla R, Cheryan M. Performance of ultrafiltration membranes in ethanol-water solutions: Effect of membrane conditioning. Journal of Membrane Science, 2002, 198(1): 75–85CrossRefGoogle Scholar
  38. 38.
    Shukla R, Cheryan M. Stability and performance of ultrafiltration membranes in aqueous ethanol. Separation and Purification Technology, 2003, 38(7): 1533–1547Google Scholar
  39. 39.
    Lee H, Dellatore S M, Miller W M, Messersmith P B. Musselinspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y. Musselinspired chemistry and michael addition reaction for efficient oil/ water separation. ACS Applied Materials & Interfaces, 2013, 5(10): 4438–4442CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhe Yang
    • 1
  • Xiaoyu Huang
    • 1
  • Jianqiang Wang
    • 1
  • Chuyang Y. Tang
    • 1
  1. 1.Department of Civil Engineeringthe University of Hong KongHong KongChina

Personalised recommendations