Mild and highly regioselective synthesis of biaryl acids via Rh (I)-catalyzed cross-dehydrogenative coupling of benzoic acids using sodium chlorite as oxidant

Communication
  • 14 Downloads

Abstract

A mild and efficient synthesis for the biaryl acids via rhodium-catalyzed cross-dehydrogenative coupling reaction has been developed. This novel protocol with sodium chlorite as an oxidant featured many advantages such as mild reaction conditions, high regioselectivity, tolerance of various functional groups, and good to excellent yields.

Keywords

biaryl acids cross-dehydrogenative coupling rhodium-catalyzed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to the Canada Research Chair (Tier 1) foundation (to C.-J. L.), NSERC, CFI, and FQRNT (CCVC) for their support of our research.

Supplementary material

11705_2017_1693_MOESM1_ESM.pdf (2.2 mb)
Mild and Highly Regioselective Synthesis of Biaryl Acids via Rh(I)-Catalyzed Cross-Dehydrogenative Coupling of Benzoic Acids Using Sodium Chlorite as Oxidant

References

  1. 1.
    Surry D S, Buchwald S L. Diamine ligands in copper-catalyzed reactions. Chemical Science (Cambridge), 2010, 1(1): 13–31CrossRefGoogle Scholar
  2. 2.
    Magano J, Dunetz J R. Large-scale applications of transition metalcatalyzed couplings for the synthesis of pharmaceuticals. Chemical Reviews, 2011, 111(3): 2177–2250CrossRefGoogle Scholar
  3. 3.
    Seechurn C C J, Kitching M O, Colacot T J, Snieckus V. Palladiumcatalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angewandte Chemie International Edition, 2012, 51(21): 506–5085Google Scholar
  4. 4.
    Girard S A, Knauber T, Li C J. The cross-dehydrogenative coupling of C(sp3)-H bonds: A versatile strategy for C‒C bond formations. Angewandte Chemie International Edition, 2014, 53(1): 74–100CrossRefGoogle Scholar
  5. 5.
    Li C J. Cross-dehydrogenative coupling (CDC): Exploring C-C bond formations beyond functional group transformations. Accounts of Chemical Research, 2009, 42(2): 335–344CrossRefGoogle Scholar
  6. 6.
    Li Z, Bohle D S, Li C J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C‒C bond formations via the oxidative activation of sp3 C‒H bonds. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (24): 8928–8933CrossRefGoogle Scholar
  7. 7.
    Sarhan A A O, Bolm C. Iron(III) chloride in oxidative C–C coupling reactions. Chemical Society Reviews, 2009, 38(9): 2730–2744CrossRefGoogle Scholar
  8. 8.
    Sun C L, Li B J, Shi Z J. Direct C‒H transformation via iron catalysis. Chemical Reviews, 2011, 111(3): 1293–1314CrossRefGoogle Scholar
  9. 9.
    Yeung C S, Dong V M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chemical Reviews, 2011, 111(3): 1215–1292CrossRefGoogle Scholar
  10. 10.
    Liu C, Zhang H, Shi W, Lei A W. Bond formations between two nucleophiles: Transition metal catalyzed oxidative cross-coupling Reactions. Chemical Reviews, 2011, 111(3): 1780–1824CrossRefGoogle Scholar
  11. 11.
    Shang X, Liu Z Q. Transition metal-catalyzed C(vinyl)‒C(vinyl) bond formation via double C(vinyl)‒H bond activation. Chemical Society Reviews, 2013, 42(8): 3253–3260CrossRefGoogle Scholar
  12. 12.
    Liu C, Yuan J W, Gao M, Tang S, Li W, Shi R Y, Lei A W. Oxidative coupling between two hydrocarbons: An update of recent C‒H functionalizations. Chemical Reviews, 2015, 115(22): 12138–12204CrossRefGoogle Scholar
  13. 13.
    Ashenhurst J A. Intermolecular oxidative cross-coupling of arenes. Chemical Society Reviews, 2010, 39(2): 540–548CrossRefGoogle Scholar
  14. 14.
    Stuart D R, Fagnou K. The catalytic cross-coupling of unactivated arenes. Science, 2007, 316(5828): 1172–1175CrossRefGoogle Scholar
  15. 15.
    Hull K L, Sanford M S. Catalytic and highly regioselective crosscoupling of aromatic C‒H substrates. Journal of the American Chemical Society, 2007, 129(39): 11904–11905CrossRefGoogle Scholar
  16. 16.
    Stuart D R, Villemure E, Fagnou K. Elements of regiocontrol in palladium-catalyzed oxidative arene cross-coupling. Journal of the American Chemical Society, 2007, 129(40): 12072–12073CrossRefGoogle Scholar
  17. 17.
    Zhang H B, Liu L, Chen Y J, Wang D, Li C J. “On water”-promoted direct coupling of indoles with 1,4-benzoquinones without catalyst. European Journal of Organic Chemistry, 2006, 2006(4): 869–873CrossRefGoogle Scholar
  18. 18.
    Campbell A N, Meyer E B, Stahl S S. Regiocontrolled aerobic oxidative coupling of indoles and benzene using Pd catalysts with 4,5-diazafluorene Ligands. Chemical Communications (Cambridge), 2011, 47(37): 10257–10259CrossRefGoogle Scholar
  19. 19.
    Cambeiro X C, Ahlsten N, Larrosa I. Au-catalyzed cross-coupling of arenes via double C–H activation. Journal of the American Chemical Society, 2015, 137(50): 15636–15639CrossRefGoogle Scholar
  20. 20.
    Xu H, Shang M, Dai H X, Yu J Q. Ligand-controlled para-selective C–H arylation of monosubstituted arenes. Organic Le tters, 2015, 17 (15): 3830–3833CrossRefGoogle Scholar
  21. 21.
    Wencel-Delord J, Nimphius C, Patureau FW, Glorius F. [RhIIICp*]-catalyzed dehydrogenative aryl-aryl bond formation. Angewandte Chemie International Edition, 2012, 51(9): 2247–2251CrossRefGoogle Scholar
  22. 22.
    Kuhl N, Hopkinson M N, Glorius F. Selective rhodium(III)-catalyzed cross-dehydrogenative coupling of furan and thiophene derivatives. Angewandte Chemie International Edition, 2012, 51 (33): 8230–8234CrossRefGoogle Scholar
  23. 23.
    Morimoto K, Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. Synthesis of fluorene derivatives through rhodiumcatalyzed dehydrogenative cyclization. Angewandte Chemie International Edition, 2012, 51(22): 5359–5362CrossRefGoogle Scholar
  24. 24.
    Dong J, Long Z, Song F, We N, Guo Q, Lan J, You J. Rhodium or ruthenium-catalyzed oxidative C‒H/C‒H cross-coupling: Direct access to extended p-conjugated systems. Angewandte Chemie International Edition, 2013, 52(2): 580–584CrossRefGoogle Scholar
  25. 25.
    Zhang T, Lin W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014, 43 (16): 5982–5993CrossRefGoogle Scholar
  26. 26.
    Li D S, Wu Y P, Zhao J, Zhang J, Lu J Y. Metal-organic frameworks based upon non-zeotype 4-connected topology. Coordination Chemistry Reviews, 2014, 261: 1–27CrossRefGoogle Scholar
  27. 27.
    Zhang H X, Wang F, Yang H, Tan Y X, Zhang J, Bu X. Interrupted zeolite LTA and ATN-type boron imidazolate frameworks. Journal of the American Chemical Society, 2011, 133(31): 11884–11887CrossRefGoogle Scholar
  28. 28.
    Zhang Y H, Li X, Song S. White light emission based on a single component Sm(III) framework and a two component Eu(III)-doped Gd(III) framework constructed from 2,2′-diphenyl dicarboxylate and 1H-imidazo[4,5-f][1,10]-phenanthroline. Chemical Communications, 2013, 49(88): 10397–10399CrossRefGoogle Scholar
  29. 29.
    Guo S Q, Tian D, Luo Y H, Zhang H. Solvothermal synthesis, structure, and luminescence of a 3-D Cd(II) complex assembled with biphenyl-2,5,2′,5′-tetracarboxylic acid involving in situ ligand reaction. Journal of Coordination Chemistry, 2012, 65(2): 308–315CrossRefGoogle Scholar
  30. 30.
    Jurd L. Plant polyphenols. III. The isolation of a new ellagitannin from the pellicle of the walnut. Journal of the American Chemical Society, 1958, 80(9): 2249–2252CrossRefGoogle Scholar
  31. 31.
    Chen D F, Zhang S X, Xie L, Xie J X, Chen K, Kashiwada Y, Zhou B N, Wang P, Cosentino L M, Lee K H. Anti-aids agents—XXVI. Structure-activity correlations of Gomisin-G-related anti-HIV lignans from Kadsura interior and of related synthetic analogues. Bioorganic & Medicinal Chemistry, 1997, 5(8): 1715–1723CrossRefGoogle Scholar
  32. 32.
    Nelson T D, Meyers A I. A rapid total synthesis of an ellagitannin. Journal of Organic Chemistry, 1994, 59(9): 2577–2580CrossRefGoogle Scholar
  33. 33.
    Parida K N, Moorthy J N. Synthesis of o-carboxyarylacrylic acids by room temperature oxidative cleavage of hydroxynaphthalenes and higher aromatics with oxone. Journal of Organic Chemistry, 2015, 80(16): 8354–8360CrossRefGoogle Scholar
  34. 34.
    Zhang D L, Zhou L Y, Quan JM, Zhang W, Gu L Q, Huang Z S, An L K. Oxygen insertion of o-quinone under catalytic hydrogenation conditions. Organic Letters, 2013, 15(6): 1162–1165CrossRefGoogle Scholar
  35. 35.
    Kang S, Lee S, Jeon M S, Kim M, Kim Y S, Han H, Yang J W. In situ generation of hydroperoxide by oxidation of benzhydrols to benzophenones using sodium hydride under oxygen atmosphere: Use for the oxidative cleavage of cyclic 1,2-diketones to dicarboxylic acids. Tetrahedron Letters, 2013, 54(5): 373–376CrossRefGoogle Scholar
  36. 36.
    Barati B, Moghadam M, Rahmati A, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I. Ruthenium hydride catalyzed direct oxidation of alcohols to carboxylic acids via transfer hydrogenation: Styrene oxide as oxygen source. Synlett, 2013, 24(1): 90–96Google Scholar
  37. 37.
    Lin G Q, Hong R. A new reagent system for modified Ullmann-type coupling reactions: NiCl2(PPh3)2/PPh3/Zn/ NaH/toluene. Journal of Organic Chemistry, 2001, 66(8): 2877–2880CrossRefGoogle Scholar
  38. 38.
    Ram R N, Singh V. Palladium(II) chloride/EDTA-catalyzed biaryl homo-coupling of aryl halides in aqueous medium in the presence of ascorbic acid. Tetrahedron Letters, 2006, 47(43): 7625–7628CrossRefGoogle Scholar
  39. 39.
    Montoya-Pelaez P J, Uh Y S, Lata C, Thompson MP, Lemieux R P, Crudden C M. The synthesis and resolution of 2,2′-, 4,4′-, and 6,6′-substituted chiral biphenyl derivatives for application in the preparation of chiral materials. Journal of Organic Chemistry, 2006, 71(16): 5921–5929CrossRefGoogle Scholar
  40. 40.
    Surry D S, Fox D J, Macdonald S J F, Spring D R. Aryl-aryl coupling via directed lithiation and oxidation. Chemical Communications (Cambridge), 2005, (20): 2589–2590CrossRefGoogle Scholar
  41. 41.
    Gong H, Zeng H Y, Zhou F, Li C J. Rhodium(I)-catalyzed regiospecific dimerization of aromatic acids: Two direct C‒H bond activations in water. Angewandte Chemie International Edition, 2015, 54(19): 5718–5721CrossRefGoogle Scholar
  42. 42.
    Song G Y, Wang WF, Li X W. C–C, C–O and C–N bond formation via rhodium-catalyzed oxidative C–H activation. Chemical Society Reviews, 2012, 41(9): 3651–3678CrossRefGoogle Scholar
  43. 43.
    Colby D A, Bergman R G, Ellman J A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chemical Reviews, 2010, 110(2): 624–655CrossRefGoogle Scholar
  44. 44.
    Stuart D R, Bertrand-Laperle M, Burgess K M N, Fagnou K. Indole synthesis via rhodium catalyzed oxidative coupling of acetanilides and internal alkynes. Journal of the American Chemical Society, 2008, 130(49): 16474–16475CrossRefGoogle Scholar
  45. 45.
    Guimond N, Gouliaras C, Fagnou K. Rhodium(III)-catalyzed isoquinolone synthesis: The N-O bond as a handle for C-N bond formation and catalyst turnover. Journal of the American Chemical Society, 2010, 132(20): 6908–6909CrossRefGoogle Scholar
  46. 46.
    Hyster T K, Rovis T. Rhodium-catalyzed oxidative cycloaddition of benzamides and alkynes via C‒H/N‒H activation. Journal of the American Chemical Society, 2010, 132(30): 10565–10569CrossRefGoogle Scholar
  47. 47.
    Patureau F W, Besset T, Kuhl N, Glorius F. Diverse strategies toward indenol and fulvene derivatives: Rh-catalyzed C‒H activation of aryl ketones followed by coupling with internal alkynes. Journal of the American Chemical Society, 2011, 133(7): 2154–2156CrossRefGoogle Scholar
  48. 48.
    Tan X, Liu B X, Li X Y, Li B, Xu S S, Song H B, Wang B Q. Rhodium-catalyzed cascade oxidative annulation leading to substituted naphtho[1,8-bc]pyrans by sequential cleavage of C(sp2)‒H/C(sp3)‒H and C(sp2)‒H/O‒H bonds. Journal of the American Chemical Society, 2012, 134(39): 16163–16166CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, FQRNT Center for Green Chemistry and CatalysisMcGill UniversityMontrealCanada
  2. 2.Department of Chemistry and Chemical EngineeringJiangsu Normal UniversityXuzhouChina

Personalised recommendations