Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures

Research Article


A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg- CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.


CO2 capture MgO sorbents Al2O3 CeO2 flue gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge the financial support from Pennsylvania State University through the Penn State Institutes of Energy and the Environment, and from the National Natural Science Foundation of China (Grant No. 21005083) and the Innovative Fund of Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No. Y37ZC4140G). Dr. Huimei Yu would like to thank the Chinese Academy of Sciences for the visiting scholarship and Dr. Song for the visiting scholar invitation to the EMS Energy Institute at Penn State.


  1. 1.
    Williams J H, De Benedictis A, Ghanadan R, Mahone A, Moore J, Morrow W R, Price S, Torn M S. The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity. Science, 2012, 335(6064): 53–59CrossRefGoogle Scholar
  2. 2.
    Ma X L, Wang X X, Song C S. “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. Journal of the American Chemical Society, 2009, 131(16): 5777–5783CrossRefGoogle Scholar
  3. 3.
    Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006, 115(1-4): 2–32CrossRefGoogle Scholar
  4. 4.
    Sema T, Naami A, Liang Z W, Shi H C, Layer A V, Sumon K Z, Wattanaphan P, Henni A, Idem R, Saiwan C, Tontiwachwuthikul P. Part 5b: Solvent chemistry: Reaction kinetics of CO2 absorption into reactive amine solutions. Carbon Management, 2012, 3(2): 201–220CrossRefGoogle Scholar
  5. 5.
    Wilson M, Tontiwachwuthikul P, Chakma A, Idem R, Veawab A, Aroonwilas A, Gelowitz D, Barrie J, Mariz C. Test results from a CO2 extraction pilot plant at boundary dam coal-fired power station. Energy, 2004, 29(9-10): 1259–1267CrossRefGoogle Scholar
  6. 6.
    Krull F F, Fritzmann C, Melin T. Liquid membranes for gas/vapor separation. Journal of Membrane Science, 2008, 325(2): 509–519CrossRefGoogle Scholar
  7. 7.
    Aaron D, Tsouris C. Separation of CO2 from flue gas: A review. Separation Science and Technology, 2005, 40(1-3): 321–348CrossRefGoogle Scholar
  8. 8.
    Meratla Z. Combining cryogenic flue gas emission remediation with a CO2/O2 combustion cycle. Energy Conversion and Management, 1997, 38: S147–S152CrossRefGoogle Scholar
  9. 9.
    D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058–6082CrossRefGoogle Scholar
  10. 10.
    Sevilla M, Fuertes A B. CO2 adsorption by activated templated carbons. Journal of Colloid and Interface Science, 2012, 366(1): 147–154CrossRefGoogle Scholar
  11. 11.
    Chen Z H, Deng S B, Wei H R, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture—a review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340CrossRefGoogle Scholar
  12. 12.
    Du T, Liu L Y, Xiao P, Che S, Wang H M. Preparation of zeolite NaA for CO2 capture from nickel laterite residue. International Journal of Minerals Metallurgy and Materials, 2014, 21: 820–825Google Scholar
  13. 13.
    Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture. Crystal Growth & Design, 2010, 10(7): 2839–2841CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Zamora E, Ibrra I A. CO2 capture under humid conditions in metal-organic frameworks. Materials Chemistry Frontiers, 2017, 1(8): 1471–1484CrossRefGoogle Scholar
  15. 15.
    Razavi S S, Hashemianzadeh S M, Karimi H. Modeling the adsorptive selectivity of carbon nanotubes for effective separation of CO2/N2 mixtures. Journal of Molecular Modeling, 2011, 17(5): 1163–1172CrossRefGoogle Scholar
  16. 16.
    Simmons J M,Wu H, Zhou W, Yildirim T. Carbon capture in metalorganic frameworks—a comparative study. Energy & Environmental Science, 2011, 4(6): 2177–2185CrossRefGoogle Scholar
  17. 17.
    Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels, 2002, 16(6): 1463–1469CrossRefGoogle Scholar
  18. 18.
    Choi S, Drese J H, Jones C W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chem-SusChem, 2009, 2(9): 796–854Google Scholar
  19. 19.
    Darunte L A, Walton K S, Sholl D S, Jones C W. CO2 capture via adsorption in amine-functionalized sorbents. Current Opinion in Chemical Engineering, 2016, 12: 82–90CrossRefGoogle Scholar
  20. 20.
    Sayari A, Heydari-Gorji A, Yang Y. CO2-induced degradation of amine-containing adsorbents: Reaction products and pathways. Journal of the American Chemical Society, 2012, 134(33): 13834–13842CrossRefGoogle Scholar
  21. 21.
    Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: Dramatic effect of water vapor. Journal of the American Chemical Society, 2010, 132(18): 6312–6314CrossRefGoogle Scholar
  22. 22.
    Wang K, Wang X Y, Zhao P F, Guo X. High-temperature capture of CO2 on lithium-based sorbents prepared by a water-based sol-gel technique. Chemical Engineering & Technology, 2014, 37(9): 1552–1558CrossRefGoogle Scholar
  23. 23.
    Chen H C, Zhang P P, Duan Y F, Zhao C S. Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process. Applied Energy, 2016, 162: 390–400CrossRefGoogle Scholar
  24. 24.
    Wang S P, Fan S S, Zhao Y J, Fan L J, Liu S Y, Ma X B. Carbonation condition and modeling studies of calcium-based sorbent in the fixed-bed reactor. Industrial & Engineering Chemistry Research, 2014, 53(25): 10457–10464CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Han Y H, Ma T Z, Guo T X. Simultaneous desulfurization and denitrification from flue gas by ferrate(VI). Environmental Science & Technology, 2011, 45(9): 4060–4065CrossRefGoogle Scholar
  26. 26.
    Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Postcombustion CO2 capture with chemical absorption: A state-of-theart review. Chemical Engineering Research & Design, 2011, 89(9): 1609–1624CrossRefGoogle Scholar
  27. 27.
    Liu M Y, Vogt C, Chaffee A L, Chang S L Y. Nanoscale structural investigation of Cs2CO3-doped MgO sorbent for CO2 capture at moderate temperature. Journal of Physical Chemistry C, 2013, 117 (34): 17514–17520CrossRefGoogle Scholar
  28. 28.
    Li Y Y, Han K K, Lin W G, Wan M M, Wang Y, Zhu J H. Fabrication of a new MgO/C sorbent for CO2 capture at elevated temperature. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(41): 12919–12925CrossRefGoogle Scholar
  29. 29.
    Liu W J, Jiang H, Tian K, Ding Y W, Yu H Q. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Environmental Science & Technology, 2013, 47(16): 9397–9403CrossRefGoogle Scholar
  30. 30.
    Zukal A, Pastva J, Cejka J. MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption. Microporous and Mesoporous Materials, 2013, 167: 44–50CrossRefGoogle Scholar
  31. 31.
    Li L, Wen X, Fu X, Wang F, Zhao N, Xiao F K, Wei W, Sun Y H. MgO/Al2O3 sorbent for CO2 capture. Energy & Fuels, 2010, 24(10): 5773–5780CrossRefGoogle Scholar
  32. 32.
    Bhagiyalakshmi M, Lee J Y, Jang H T. Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption. International Journal of Greenhouse Gas Control, 2010, 4(1): 51–56CrossRefGoogle Scholar
  33. 33.
    Bian S W, Baltrusaitis J, Galhotra P, Grassian V H. A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption. Journal of Materials Chemistry, 2010, 20(39): 8705–8710CrossRefGoogle Scholar
  34. 34.
    Jeon H, Min Y J, Ahn S H, Hong S-M, Shin J-S, Kim J H, Lee K B. Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2012, 414: 75–81Google Scholar
  35. 35.
    She L, Li J,Wan Y, Yao X D, Tu B, Zhao D Y. Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers. Journal of Materials Chemistry, 2011, 21(3): 795–800CrossRefGoogle Scholar
  36. 36.
    Wang Q A, Luo J Z, Zhong Z Y, Borgna A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy & Environmental Science, 2011, 4(1): 42–55CrossRefGoogle Scholar
  37. 37.
    Lee S C, Chae H J, Lee S J, Choi B Y, Yi C K, Lee J B, Ryu C K, Kim J C. Development of regenerable MgO-based sorbent promoted with K2CO3 for CO2 capture at low temperatures. Environmental Science & Technology, 2008, 42(8): 2736–2741CrossRefGoogle Scholar
  38. 38.
    Xiao G K, Singh R, Chaffee A, Webley P. Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures. International Journal of Greenhouse Gas Control, 2011, 5(4): 634–639CrossRefGoogle Scholar
  39. 39.
    Zhang K L, Li X H S, Duan Y H, King D L, Singh P, Li L Y. Roles of double salt formation and NaNO3 in Na2CO3-promoted MgO absorbent for intermediate temperature CO2 removal. International Journal of Greenhouse Gas Control, 2013, 12: 351–358CrossRefGoogle Scholar
  40. 40.
    Lee S C, Choi B Y, Lee T J, Ryu C K, Soo Y S, Kim J C. CO2 absorption and regeneration of alkali metal-based solid sorbents. Catalysis Today, 2006, 111(3-4): 385–390CrossRefGoogle Scholar
  41. 41.
    Kim K, Han J W, Lee K S, Lee W B. Promoting alkali and alkalineearth metals on MgO for enhancing CO2 capture by first-principles calculations. Physical Chemistry Chemical Physics, 2014, 16(45): 24818–24823CrossRefGoogle Scholar
  42. 42.
    Watanabe S, Ma X L, Song C S. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD. Journal of Physical Chemistry C, 2009, 113(32): 14249–14257CrossRefGoogle Scholar
  43. 43.
    Han K K, Zhou Y, Chun Y, Zhu J H. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature. Journal of Hazardous Materials, 2012, 203: 341–347CrossRefGoogle Scholar
  44. 44.
    Yong Z, Mata V, Rodriguez A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Industrial & Engineering Chemistry Research, 2001, 40(1): 204–209CrossRefGoogle Scholar
  45. 45.
    Wang Q, Tay H H, Guo Z, Chen L, Liu Y, Chang J, Zhong Z, Luo J, Borgna A. Morphology and composition controllable synthesis of Mg-Al-CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity. Applied Clay Science, 2012, 55: 18–26CrossRefGoogle Scholar
  46. 46.
    Li B, Wen X, Zhao N, Wang X Z, Wei W, Sun Y H, Ren Z H, Wang Z J. Preparation of high stability MgO-ZrO2 solid base and its high temperature CO2 capture properties. Journal of Fuel Chemistry and Technology, 2010, 38: 473–477Google Scholar
  47. 47.
    Kruk M, Jaroniec M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chemistry of Materials, 2001, 13(10): 3169–3183CrossRefGoogle Scholar
  48. 48.
    Klug H P, Alexander L E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley, 1954Google Scholar
  49. 49.
    Zukal A, Kubu M, Pastva J. Two-dimensional zeolites: Adsorption of carbon dioxide on pristine materials and on materials modified by magnesium oxide. Journal of CO2 Utilization, 2017, 21: 9–16CrossRefGoogle Scholar
  50. 50.
    Pirngruber G D, Raybaud P, Belmabkhout Y, Cejka J, Zukal A. The role of the extra-framework cations in the adsorption of CO2 on faujasite Y. Physical Chemistry Chemical Physics, 2010, 12(41): 13534–13546CrossRefGoogle Scholar
  51. 51.
    Park D H, Lakhi K S, Ramadass K, Kim M K, Talapaneni S N, Joseph S, Ravon U, Al-Bahily K, Vinu A. Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO2 capture capacity. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(45): 10753–10757Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EMS Energy Institute, PSU-DUT Joint Center for Energy Research, and Department of Energy & Mineral EngineeringPennsylvania State UniversityUniversity ParkUSA
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  3. 3.East China University of Science and TechnologyShanghaiChina

Personalised recommendations