Skip to main content
Log in

Tetrazole tethered polymers for alkaline anion exchange membranes

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951

    Article  CAS  PubMed  Google Scholar 

  2. McLean G F, Niet T, Prince-Richard S, Djilali N. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 2002, 27(5): 507–526

    Article  CAS  Google Scholar 

  3. Gair S, Cruden A, McDonald J, Hegarty T, Chesshire M. Fuel cells for power generation and waste treatment. Journal of Power Sources, 2006, 154(2): 472–478

    Article  CAS  Google Scholar 

  4. Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells (Weinheim), 2005, 5(2): 187–200

    Article  CAS  Google Scholar 

  5. Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, MustainWE, Nijmeijer K, Scott K, Xu T, et al. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science, 2014, 7(10): 3135–3191

    Article  CAS  Google Scholar 

  6. Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011, 377(1-2): 1–35

    Article  CAS  Google Scholar 

  7. Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Constructing ionic highway in alkaline polymer electrolytes. Energy & Environmental Science, 2014, 7(1): 354–360

    Article  CAS  Google Scholar 

  8. Li N, Yan T, Li Z, Thurn-Albrecht T, Binder W H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy & Environmental Science, 2012, 5(7): 7888–7892

    Article  CAS  Google Scholar 

  9. Li N, Leng Y, Hickner M A, Wang C Y. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. Journal of the American Chemical Society, 2013, 135(27): 10124–10133

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Liu L, Miao Q, Jin B, Bai R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chemical Communications, 2014, 50 (21): 2791–2793

    Article  CAS  PubMed  Google Scholar 

  11. Ran J, Wu L, Wei B, Chen Y, Xu T. Simultaneous enhancements of conductivity and stability for anion exchange membranes (AEMs) through precise structure design. Scientific Reports, 2014, 4(1): 6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ran J, Wu L, Xu T. Enhancement of hydroxide conduction by selfassembly in anion conductive comb-shaped copolymers. Polymer Chemistry, 2013, 4(17): 4612–4620

    Article  CAS  Google Scholar 

  13. Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown N B, Guiver M D, Wu L, Xu T. Highly conductive anion-exchange membranes from microporous Troger’s base polymers. Angewandte Chemie International Edition in English, 2016, 55(38): 11499–11502

    Article  CAS  Google Scholar 

  14. Hickner M A, Herring A M, Coughlin E B. Anion exchange membranes: Current status and moving forward. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1727–1735

    Article  CAS  Google Scholar 

  15. He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang Z, Xu T. A novel methodology to synthesize highly conductive anion exchange membranes. Scientific Reports, 2015, 5(1): 13417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Si J, Lu S, Xu X, Peng S, Xiu R, Xiang Y. A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell: Design, synthesis, and properties. ChemSusChem, 2014, 7(12): 3389–3395

    Article  CAS  PubMed  Google Scholar 

  17. Pan J, Zhu L, Han J, Hickner M A. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chemistry of Materials, 2015, 27 (19): 6689–6698

    Article  CAS  Google Scholar 

  18. Ran J, Wu L, Ge Q, Chen Y, Xu T. High performance anion exchange membranes obtained through graft architecture and rational cross-linking. Journal of Membrane Science, 2014, 470: 229–236

    Article  CAS  Google Scholar 

  19. Wu L, Pan Q, Varcoe J R, Zhou D, Ran J, Yang Z, Xu T. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490: 1–8

    Article  CAS  Google Scholar 

  20. Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability. Chemical Communications, 2014, 50(31): 4092–4095

    Article  CAS  PubMed  Google Scholar 

  21. Zhang M, Liu J, Wang Y, An L, Guiver M D, Li N. Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12284–12296

    Article  CAS  Google Scholar 

  22. Yang Z, Zhou J,Wang S, Hou J,Wu L, Xu T. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 15015–15019

    Article  CAS  Google Scholar 

  23. Han J, Peng H, Pan J,Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Applied Materials & Interfaces, 2013, 5(24): 13405–13411

    Article  CAS  Google Scholar 

  24. Gu S, Skovgard J, Yan Y S. Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem, 2012, 5(5): 843–848

    Article  CAS  PubMed  Google Scholar 

  25. Li N, Guiver M D, Binder W H. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem, 2013, 6(8): 1376–1383

    Article  CAS  PubMed  Google Scholar 

  26. Song M K, Li H, Li J, Zhao D, Wang J, Liu M. Tetrazole-based, anhydrous proton exchange membranes for fuel cells. Advanced Materials, 2014, 26(8): 1277–1282

    Article  CAS  PubMed  Google Scholar 

  27. Gao H, Shreeve J M. Azole-based energetic salts. Chemical Reviews, 2011, 111(11): 7377–7436

    Article  CAS  PubMed  Google Scholar 

  28. Karaghiosoff K, Klapötke T M, Mayer P, Sabaté C M, Penger A, Welch J M. Salts of methylated 5-aminotetrazoles with energetic anions. Inorganic Chemistry, 2008, 47(3): 1007–1019

    Article  CAS  PubMed  Google Scholar 

  29. Klapötke T M, Miró Sabaté C, Penger A, Rusan M, Welch J M. Energetic salts of low-symmetry methylated 5-aminotetrazoles. European Journal of Inorganic Chemistry, 2009, 2009(7): 880–896

    Article  CAS  Google Scholar 

  30. Lu D, Winter C H. Complexes of the [K(18-Crown-6)]+ fragment with bis(tetrazolyl)borate ligands: Unexpected boron-nitrogen bond isomerism and associated enforcement of k3-N,N′,H-ligand chelation. Inorganic Chemistry, 2010, 49(13): 5795–5797

    Article  CAS  PubMed  Google Scholar 

  31. Allen F H, Groom C R, Liebeschuetz J W, Bardwell D A, Olsson T S G, Wood P A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: The structural basis for tetrazole-carboxylic acid bioisosterism. Journal of Chemical Information and Modeling, 2012, 52(3): 857–866

    Article  CAS  PubMed  Google Scholar 

  32. Tsarevsky N V, Bernaerts K V, Dufour B, Du Prez F E, Matyjaszewski K. Well-defined (Co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co)polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules, 2004, 37(25): 9308–9313

    Article  CAS  Google Scholar 

  33. Tsai T H, Maes A M, Vandiver M A, Versek C, Seifert S, Tuominen M, Liberatore M W, Herring A M, Coughlin E B. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1751–1760

    Article  CAS  Google Scholar 

  34. Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochemistry Communications, 2000, 2 (10): 697–702

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has been supported by the National Natural Science Foundation of China (Grant No. 91534203) and K. C. Wong Education Foundation (2016-11). Erigene Bakangura is grateful to CASTWAS President’s fellowship for PhD programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongwen Xu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakangura, E., He, Y., Ge, X. et al. Tetrazole tethered polymers for alkaline anion exchange membranes. Front. Chem. Sci. Eng. 12, 306–310 (2018). https://doi.org/10.1007/s11705-017-1690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1690-7

Keywords

Navigation