Advertisement

Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation

  • Shufeng Shan
  • Haiyan Liu
  • Gang Shi
  • Xiaojun Bao
Research Article
  • 26 Downloads

Abstract

The effects of phosphorus on the structure and hydrofining performance of tri-metallic WMoNi/Al2O3 catalysts prepared with W/Mo-based hybrid precursor nanocrystals were investigated. The incorporation of phosphorus weakened the metal-support interactions (MSIs) and facilitated the formation of more synergetic NiWMoS phases with higher stacks. Catalytic tests using a fluid catalytic cracking diesel fuel showed that the changes in the MSIs and the morphology of the active phases had a more positive effect on the hydrodenitrogenation activity than on the hydrodesulfurization activity. In contrast, when phosphorus was incorporated into a tri-metallic WMoNiP/ Al2O3 catalyst prepared by a conventional incipient impregnation method, the MSIs decreased causing aggregation of the metal species which resulted in poorer hydrofining performance of the catalyst. These results show that incorporating phosphorus into a WMoNi/Al2O3 catalyst can finely tune the structure of the active phase to enhance the hydrogenation and hydrodenitrogenation activity of the resulting tri-metallic catalyst.

Keywords

fluid catalytic cracking diesel hydrofining performance WMoNiP/Al2O3 synergetic effect and structure of NiWMoS phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge the support from the National Natural Science Foundation of China (Grant Nos. U1462203 and 21106182).

References

  1. 1.
    Chen W, Maugé F, van Gestel J, Nie H, Li D, Long X. Effect of modification of the alumina acidity on the properties of supporperties of supported Mo and CoMo sulfide catalysts. Journal of Catalysis, 2013, 304: 47–62CrossRefGoogle Scholar
  2. 2.
    Zepeda T A, Pawelec B, Obeso-Estrella R, Díaz de León J N, Fuentes S, Alonso-Núñez G, Fierro J L G. Competitive HDS and HDN reactions over NiMoS/HMS-Al catalysts: Diminishing of the inhibition of HDS reaction by support modification with P. Applied Catalysis B: Environmental, 2016, 180: 569–579CrossRefGoogle Scholar
  3. 3.
    Díaz de León J N, Zepeda T A, Alonso-Nuñez G, Galván D H, Pawelec B, Fuentes S. Insight of 1D γ-Al2O3 nanorods decoration by NiWS nanoslabs in ultra-deep hydrodesulfurization catalyst. Journal of Catalysis, 2015, 321: 51–61CrossRefGoogle Scholar
  4. 4.
    Furimsky E, Massoth F E. Hydrodenitrogenation of petroleum. Catalysis Reviews. Science and Engineering, 2005, 47(3): 297–489CrossRefGoogle Scholar
  5. 5.
    Pawelec B, Navarro R M, Campos-Martin J M, Fierro J L G. Towards near zero-sulfur liquid fuels: A perspective review. Catalysis Science & Technology, 2011, 1(1): 23–42CrossRefGoogle Scholar
  6. 6.
    Stanislaus A, Marafi A, Rana M S. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catalysis Today, 2010, 153(1-2): 1–68CrossRefGoogle Scholar
  7. 7.
    Cervantes-Gaxiola M E, Arroyo-Albiter M, Pérez-Larios A, Balbuena P B, Espino-Valencia J. Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an AlTiMg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel, 2013, 113: 733–743CrossRefGoogle Scholar
  8. 8.
    Thomazeau C, Geantet C, Lacroix M, Danot M, Harlé V, Raybaud P. Predictive approach for the design of improved HDT catalysts: γ-Alumina supported (Ni, Co) promoted Mo1–xWxS2 active phases. Applied Catalysis A, General, 2007, 322: 92–97CrossRefGoogle Scholar
  9. 9.
    Plantenga F L, Cerfontain R, Eijsbouts S, van Houtert F, Anderson G H, Miseo S, Soled S, Riley K, Fujita K, Inoue Y. 89 “Nebula”: A hydroprocessing catalyst with breakthrough activity. Studies in Surface Science and Catalysis, 2003, 145: 407–410CrossRefGoogle Scholar
  10. 10.
    Park Y C, Oh E S, Rhee H K. Characterization and catalytic activity of WNiMo/Al2O3 catalyst for hydrodenitrogenation of pyridine. Industrial & Engineering Chemistry Research, 1997, 36(12): 5083–5089CrossRefGoogle Scholar
  11. 11.
    van Haandel L, Bremmer M, Kooyman P J, van Veen J A R, Weber T, Hensen E J M. Structure-activity correlations in hydrodesulfurization reactions over Ni-promoted MoxW(1–x)S2/Al2O3 catalysts. ACS Catalysis, 2015, 5(12): 7276–7287CrossRefGoogle Scholar
  12. 12.
    Shan S, Liu H, Yue Y, Shi G, Bao X. Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergism prepared from inorganic-organic hybrid nanocrystals. Journal of Catalysis, 2016, 344: 325–333CrossRefGoogle Scholar
  13. 13.
    Mushrush G W, Quintana M A, Bauserman J W, Willauer H D. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality. Journal of Environmental Science and Health. Part A, 2011, 46(2): 176–180CrossRefGoogle Scholar
  14. 14.
    Prins R. Catalytic hydrodenitrogenation. Advances in Catalysis, 2001, 46: 399–464Google Scholar
  15. 15.
    Kraus H, Prins R. The effect of phosphorus on oxidic NiMo(CoMo)/γ-Al2O3 catalysts: A solid state NMR investigation. Journal of Catalysis, 1997, 170(1): 20–28CrossRefGoogle Scholar
  16. 16.
    Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts: The “rim-edge” model. Journal of Catalysis, 1994, 149(2): 414–427CrossRefGoogle Scholar
  17. 17.
    Topsøe H. The role of Co–Mo–S type structures in hydrotreating catalysts. Applied Catalysis A, General, 2007, 322: 3–8CrossRefGoogle Scholar
  18. 18.
    Sun M, Nicosia D, Prins R. The effects of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catalysis Today, 2003, 86(1-4): 173–189CrossRefGoogle Scholar
  19. 19.
    Xiang C E, Chai Y M, Fan J, Liu C G. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355–360CrossRefGoogle Scholar
  20. 20.
    Shi L, Zhang Z H, Qiu Z G, Guo F, Zhang W, Zhao L F. Effect of phosphorus modification on the catalytic properties of Mo-Ni/Al2O3 in the hydrodenitrogenation of coal tar. Journal of Fuel Chemistry and Technology, 2015, 43(1): 74–80CrossRefGoogle Scholar
  21. 21.
    Rashidi F, Sasaki T, Rashidi A M, Nemati Kharat A, Jozani K J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: Impact of support, phosphorus, and/or boron on the structure and catalytic activity. Journal of Catalysis, 2013, 299: 321–335CrossRefGoogle Scholar
  22. 22.
    Usman Y T, Kubota T, Okamoto Y. Effect of phosphorus addition on the active sites of a Co-Mo/Al2O3 catalyst for the hydrodesulfurization of thiophene. Applied Catalysis A, General, 2007, 328(2): 219–225CrossRefGoogle Scholar
  23. 23.
    Sigurdson S, Sundaramurthy V, Dalai A K, Adjaye J. Phosphorus promoted trimetallic NiMoW/γ-Al2O3 sulfide catalysts in gas oil hydrotreating. Journal of Molecular Catalysis A Chemical, 2008, 291(1-2): 30–37CrossRefGoogle Scholar
  24. 24.
    Han W, Yuan P, Fan Y, Shi G, Liu H, Bai D, Bao X. Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic-organic hybrid nanocrystals as a superior precursor. Journal of Materials Chemistry, 2012, 22(48): 25340–25353CrossRefGoogle Scholar
  25. 25.
    Shan S, Yuan P, Han W, Shi G, Bao X. Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. Journal of Catalysis, 2015, 330: 288–301CrossRefGoogle Scholar
  26. 26.
    Fan Y, Lu J, Shi G, Liu H, Bao X. Effect of synergism between potassium and phosphorus on selective hydrodesulfurization performance of Co-Mo/Al2O3 FCC gasoline hydro-upgrading catalyst. Catalysis Today, 2007, 125(3-4): 220–228CrossRefGoogle Scholar
  27. 27.
    Hensen E J M, de Beer V H J, van Veen J A R, van Santen R A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts. Catalysis Letters, 2002, 84(1-2): 59–67CrossRefGoogle Scholar
  28. 28.
    Nikulshin P A, Ishutenko D I, Mozhaev A A, Maslakov K I, Pimerzin A A. Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. Journal of Catalysis, 2014, 312: 152–169CrossRefGoogle Scholar
  29. 29.
    Ramírez J, Gutiérrez-Alejandre A. Characterization and hydrodesulfurization activity of W-based catalysts supported on Al2O3-TiO2 mixed oxides. Journal of Catalysis, 1997, 170(1): 108–122CrossRefGoogle Scholar
  30. 30.
    Atanasova P, Tabakova T, Vladov C, Halachev T, Lopez Agudo A. Effect of phosphorus concentration and method of preparation on the structure of the oxide form of phosphorus-nickel-tungsten/ alumina hydrotreating catalysts. Applied Catalysis A, General, 1997, 161(1-2): 105–119CrossRefGoogle Scholar
  31. 31.
    Gutiérrez O Y, Valencia D, Fuentes G A, Klimova T. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species: Synthesis, characterization and evaluation in 4,6-dimethyldibenzothiophene hydrodesulfurization. Journal of Catalysis, 2007, 249 (2): 140–153CrossRefGoogle Scholar
  32. 32.
    Mogica-Betancourt J C, López-Benítez A, Montiel-López J R, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A. Interaction effects of nickel polyoxotungstate with the Al2O3-MgO support for application in dibenzothiophene hydrodesulfurization. Journal of Catalysis, 2014, 313: 9–23CrossRefGoogle Scholar
  33. 33.
    Li Y, Pan D, Yu C, Fan Y, Bao X. Synthesis and hydrodesulfurization properties of NiW catalyst supported on high-aluminumcontent, highly ordered, and hydrothermally stable Al-SBA-15. Journal of Catalysis, 2012, 286: 124–136CrossRefGoogle Scholar
  34. 34.
    Campelo J M, Garcia A, Luna D, Marinas J M, Romero A A. Characterization of acidity in AlPO4-Al2O3 (5–15 wt-% Al2O3) catalysts using pyridine temperature programmed desorption. Thermochimica Acta, 1995, 265: 103–110CrossRefGoogle Scholar
  35. 35.
    Ferdous D, Dalai A K, Adjaye J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part I. Synthesis and characterization. Applied Catalysis A, General, 2004, 260(2): 137–151CrossRefGoogle Scholar
  36. 36.
    Huirache-Acuña R, Zepeda T A, Rivera-Muñoz E M, Nava R, Loricera C V, Pawelec B. Characterization and HDS performance of sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates. Fuel, 2015, 149: 149–161CrossRefGoogle Scholar
  37. 37.
    Fan Y, Xiao H, Shi G, Liu H, Qian Y, Wang T, Gong G, Bao X. Citric acid-assisted hydrothermal method for preparing NiW/USYAl2O3 ultradeep hydrodesulfurization catalysts. Journal of Catalysis, 2011, 279(1): 27–35CrossRefGoogle Scholar
  38. 38.
    Nikulshin P A, Salnikov V A, Mozhaev A V, Minaev P P, Kogan V M, Pimerzin A A. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions. Journal of Catalysis, 2014, 309: 386–396CrossRefGoogle Scholar
  39. 39.
    Mendoza-Nieto J A, Robles-Méndez F, Klimova T E. Support effect on the catalytic performance of trimetallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catalysis Today, 2015, 250: 47–59CrossRefGoogle Scholar
  40. 40.
    Xie F Y, Gong L, Liu X, Tao Y T, Zhang W H, Chen S H, Meng H, Chen J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185(3): 112–118CrossRefGoogle Scholar
  41. 41.
    Wachs I E, Kim T, Ross E I. Catalysis science of the solid acidity of model supported tungsten oxide catalysts. Catalysis Today, 2006, 116(2): 162–168CrossRefGoogle Scholar
  42. 42.
    Fan Y, Xiao H, Shi G, Liu H, Bao X. A novel approach for modulating the morphology of supported metal nanoparticles in hydrodesulfurization catalysts. Energy & Environmental Science, 2011, 4(2): 572–582CrossRefGoogle Scholar
  43. 43.
    Amaya S L, Alonso-Núñez G, Zepeda T A, Fuentes S, Echavarría A. Effect of the divalent metal and the activation temperature of NiMoW and CoMoW on the dibenzothiophene hydrodesulfurization reaction. Applied Catalysis B: Environmental, 2014, 148-149: 221–230CrossRefGoogle Scholar
  44. 44.
    Hensen E J M, Kooyman P J, van der Meer Y, van der Kraan A M, de Beer V H J, van Veen J A R, van Santen R A. The relation between morphology and hydrotreating activity for supported MoS2 particles. Journal of Catalysis, 2001, 199(2): 224–235CrossRefGoogle Scholar
  45. 45.
    Ferdous D, Dalai A K, Adjaye J. A series of NiMo/Al2O3 catalysts containing boron and phosphorus: Part II. Hydrodenitrogenation and hydrodesulfurization using heavy gas oil derived from Athabasca bitumen. Applied Catalysis A, General, 2004, 260(2): 153–162Google Scholar
  46. 46.
    Trejo F, Rana M S, Ancheyta J, Chávez S. Influence of support and supported phases on catalytic functionalities of hydrotreating catalysts. Fuel, 2014, 138: 104–110CrossRefGoogle Scholar
  47. 47.
    Zdražil M. Recent advances in catalysis over sulphides. Catalysis Today, 1988, 3(4): 269–365CrossRefGoogle Scholar
  48. 48.
    Wang I, Chang R C. Catalytic hydrodesulfurization and hydrodenitrogenation over Co-Mo on TiO2-ZrO2-V2O5. Journal of Catalysis, 1989, 117(1): 266–274CrossRefGoogle Scholar
  49. 49.
    Stanislaus A, Cooper B H. Aromatic hydrogenation catalysis: A review. Catalysis Reviews. Science and Engineering, 1994, 36(1): 75–123CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil ProcessingChina University of PetroleumBeijingChina
  2. 2.State Key Laboratory of Energy & Environmental PhotocatalysisFuzhou UniversityFuzhouChina

Personalised recommendations