Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 132–144 | Cite as

Mesoporous zeolites for biofuel upgrading and glycerol conversion

Review Article
  • 22 Downloads

Abstract

With the recent emphasis and development of sustainable chemistry, the conversion of biomass feedstocks into alternative fuels and fine chemicals over various heterogeneous catalysts has received much attention. In particular, owing to their uniform micropores, strong acidity, and stable and rigid frameworks, zeolites as catalysts or co-catalysts have exhibited excellent catalytic performances in many reactions, including hydrodesulfurization, Fischer-Tropsch synthesis, and hydrodeoxygenation. However, the relatively small sizes of the zeolite micropores strongly limit the conversion of bulky biomolecules. To overcome this issue, mesoporous zeolites with pores larger than those of biomolecules have been synthesized. As expected, these mesoporous zeolites have outperformed conventional zeolites with improved activities, better selectivities, and longer catalyst lives for the upgrading of pyrolysis oils, the transformation of lipids into biofuels, and the conversion of glycerol into acrolein and aromatic compounds. This review briefly summarizes recent works on the rational synthesis of mesoporous zeolites and their superior catalytic properties in biomass conversion.

Keywords

biomass conversion mesoporous zeolite sustainable chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 91634201, 21403193, and 91645105).

References

  1. 1.
    Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098CrossRefGoogle Scholar
  2. 2.
    Goossens H, Deleeuw J W, Schenck P A, Brassell S C. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature, 1984, 312(5993): 440–442CrossRefGoogle Scholar
  3. 3.
    Jones D M, Head I M, Gray N D, Adams J J, Rowan A K, Aitken C M, Bennett B, Huang H, Brown A, Bowler B F J, Oldenburg T, Erdmann M, Larter S R. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2008, 451(7175): 176–U6CrossRefGoogle Scholar
  4. 4.
    Qian K, Rodgers R P, Hendrickson C L, Emmett M R, Marshall A G. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy & Fuels, 2001, 15(2): 492–498CrossRefGoogle Scholar
  5. 5.
    Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighi M. Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environmental Science & Technology, 1991, 25(8): 1489–1495CrossRefGoogle Scholar
  6. 6.
    Keiluweit M, Nico P S, Johnson M G, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 2010, 44(4): 1247–1253CrossRefGoogle Scholar
  7. 7.
    Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130(3-4): 237–253CrossRefGoogle Scholar
  8. 8.
    Steen E J, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre S B, Keasling J D. Microbial production of fatty-acidderived fuels and chemicals from plant biomass. Nature, 2010, 463 (7280): 559–U182CrossRefGoogle Scholar
  9. 9.
    Wang L, Xiao F S. Nanoporous catalysts for biomass conversion. Green Chemistry, 2015, 17(1): 24–39CrossRefGoogle Scholar
  10. 10.
    Vassilev S V, Baxter D, Andersen L K, Vassileva C G. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 2013, 105: 19–39Google Scholar
  11. 11.
    Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 2007, 46 (38): 7164–7183CrossRefGoogle Scholar
  12. 12.
    Mosier N, Wyman C, Dale B, Elander R, Lee Y Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6): 673–686CrossRefGoogle Scholar
  13. 13.
    Tilman D, Hill J, Lehman C. Carbon-negative biofuels from lowinput high-diversity grassland biomass. Science, 2006, 314(5805): 1598–1600CrossRefGoogle Scholar
  14. 14.
    Meng X J, Xiao F S. Green routes for synthesis of zeolite. Chemical Reviews, 2014, 114(2): 1521–1543CrossRefGoogle Scholar
  15. 15.
    Xu S D, Sheng H D, Ye T, Hu D, Liao S F. Hydrophobic aluminosilicate zeolites as highly efficient catalysts for the dehydration of alcohols. Catalysis Communications, 2016, 78: 75–79CrossRefGoogle Scholar
  16. 16.
    Yoshioka M, Yokoi T, Tatsumi T. Development of the CON-type aluminosilicate zeolite and its catalytic application for the MTO reaction. ACS Catalysis, 2015, 5(7): 4268–4275CrossRefGoogle Scholar
  17. 17.
    Liu M, Yokoi T, Kondo J N, Tatsumi T. Synthesis of SFH-type aluminosilicate zeolite with 14-membered ring and its applications as solid acidic catalyst. Microporous and Mesoporous Materials, 2014, 193: 166–172CrossRefGoogle Scholar
  18. 18.
    Pérez-Ramírez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542CrossRefGoogle Scholar
  19. 19.
    Wang Z, Li C, Cho H J, Kung S C, Snyder M A, Fan W. Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305CrossRefGoogle Scholar
  20. 20.
    Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micromeso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161CrossRefGoogle Scholar
  21. 21.
    Ren L, Guo Q, Kumar P, Orazov M, Xu D, Alhassan SM, Mkhoyan K A, Davis M E, Tsapatsis M. Self-pillared, single-unit-cell Sn-MFI zeolite nanosheets and their use for glucose and lactose isomerization. Angewandte Chemie International Edition, 2015, 54(37): 10848–10851CrossRefGoogle Scholar
  22. 22.
    Tang B, Dai W, Sun X, Wu G, Guan N, Hunger M, Li L. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chemistry, 2015, 17(3): 1744–1755CrossRefGoogle Scholar
  23. 23.
    Wang D, Ma B, Wang B, Zhao C, Wu P. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion. Chemical Communications, 2015, 51(82): 15102–15105CrossRefGoogle Scholar
  24. 24.
    Ma B, Yi X, Chen L, Zheng A, Zhao C. Interconnected hierarchical HUSY zeolite-loaded Ni nano-particles probed for hydrodeoxygenation of fatty acids, fatty esters, and palm oil. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(29): 11330–11341CrossRefGoogle Scholar
  25. 25.
    Wang L, Zhang J, Yi X, Zheng A, Deng F, Chen C, Ji Y, Liu F, Meng X, Xiao F S. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catalysis, 2015, 5(5): 2727–2734CrossRefGoogle Scholar
  26. 26.
    Veses A, Puertolas B, Lopez J M, Callen M S, Solsona B, Garcia T. Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1653–1660CrossRefGoogle Scholar
  27. 27.
    Nandiwale K Y, Galande N D, Thakur P, Sawant S D, Zambre V P, Bokade V V. One-Pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1653–1660CrossRefGoogle Scholar
  28. 28.
    Fu W, Zhang L, Tang T, Ke Q, Wang S, Hu J, Fang G, Li J, Xiao F S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. Journal of the American Chemical Society, 2011, 133 (39): 15346–15349CrossRefGoogle Scholar
  29. 29.
    Tang T, Yin C, Wang L, Ji Y, Xiao F S. Good sulfur tolerance of a mesoporous beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. Journal of Catalysis, 2008, 257(1): 125–133CrossRefGoogle Scholar
  30. 30.
    Bao J, He J, Zhang Y, Yoneyama Y, Tsubaki N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angewandte Chemie International Edition, 2008, 47(2): 353–356CrossRefGoogle Scholar
  31. 31.
    Sartipi S, Parashar K, Valero-Romero M J, Santos V P, van der Linden B, Makkee M, Kapteijn F, Gascon J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. Journal of Catalysis, 2013, 305: 179–190CrossRefGoogle Scholar
  32. 32.
    Kang J, Cheng K, Zhang L, Zhang Q, Ding J, Hua W, Lou Y, Zhai Q, Wang Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5?C11 isoparaffins. Angewandte Chemie International Edition, 2011, 50(22): 5200–5203CrossRefGoogle Scholar
  33. 33.
    Peng X, Cheng K, Kang J, Gu B, Yu X, Zhang Q, Wang Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: Diesel fuel production over mesoporous zeolite-Ysupported cobalt nanoparticles. Angewandte Chemie International Edition, 2015, 54(15): 4553–4556CrossRefGoogle Scholar
  34. 34.
    Yue Y, Liu H, Yuan P, Li T, Yu C, Bi H, Bao X J. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization-reorganization approach. Journal of Catalysis, 2014, 319: 200–210CrossRefGoogle Scholar
  35. 35.
    Groen J C, Moulijn J A, Pérez-Ramírez J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131CrossRefGoogle Scholar
  36. 36.
    Sazama P, Sobalik Z, Dedecek J, Jakubec I, Parvulescu V, Bastl Z, Rathousky J, Jirglova H. Enhancement of activity and selectivity in acid-catalyzed reactions by sealuminated hierarchical zeolites. Angewandte Chemie International Edition, 2013, 52(7): 2038–2041CrossRefGoogle Scholar
  37. 37.
    Qin Z, Shen B, Gao X, Lin F, Wang B, Xu C M. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. Journal of Catalysis, 2013, 278(2): 266–275CrossRefGoogle Scholar
  38. 38.
    de Jong K P, Zecevic J, Friedrich H, de Jongh P E, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie International Edition, 2010, 49(52): 10074–10078CrossRefGoogle Scholar
  39. 39.
    Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928CrossRefGoogle Scholar
  40. 40.
    García-Martínez J, Lia K, Krishnaiah G. A mesostructured Y zeolite as a superior FCC catalyst—from lab to refinery. Chemical Communications, 2012, 48(97): 11841–11843CrossRefGoogle Scholar
  41. 41.
    Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093CrossRefGoogle Scholar
  42. 42.
    Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, et al. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510CrossRefGoogle Scholar
  43. 43.
    Zhang C, Wu Q, Lei C, Pan S, Bian C, Wang L, Meng X, Xiao F S. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 2017, 56(6): 1450–1460CrossRefGoogle Scholar
  44. 44.
    Zhao C, Lercher J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie International Edition, 2012, 51(24): 5935–5940CrossRefGoogle Scholar
  45. 45.
    Vu H X, Schneider M, Bentrup U, Dang T T, Phan B M Q, Nguyen D A, Armbruster U, Martin A. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass. Industrial & Engineering Chemistry Research, 2015, 54(6): 1773–1782CrossRefGoogle Scholar
  46. 46.
    Wang D, Ma B, Wang B, Zhao C, Wu P. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion. Chemical Communications, 2015, 51(82): 15102–15105CrossRefGoogle Scholar
  47. 47.
    Ma B, Zhao C. High-grade diesel production by hydrodeoxygenation of palm oil over a hierarchically structured Ni/HBEA catalyst. Green Chemistry, 2015, 17(3): 1692–1701CrossRefGoogle Scholar
  48. 48.
    Stocker M. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 2008, 47 (48): 9200–9211CrossRefGoogle Scholar
  49. 49.
    Metzger J O. Production of liquid hydrocarbons from biomass. Angewandte Chemie International Edition, 2006, 45(5): 696–698CrossRefGoogle Scholar
  50. 50.
    Huber G W, Corma A. Synergies between bio-and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition, 2007, 46(38): 7184–7201CrossRefGoogle Scholar
  51. 51.
    Verma D, Kumar R, Rana B S, Sinha A K. Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy & Environmental Science, 2011, 4(5): 1667–1671CrossRefGoogle Scholar
  52. 52.
    Ott L, Bicker M, Vogel H. Catalytic dehydration of glycerol in suband supercritical water: A new chemical process for acrolein production. Green Chemistry, 2006, 8(2): 214–220CrossRefGoogle Scholar
  53. 53.
    Chai S H, Wang H P, Liang Y, Xu B Q. Sustainable production of acrolein: Investigation of solid acid-base catalysts for gas-phase dehydration of glycerol. Green Chemistry, 2007, 9(10): 1130–1136CrossRefGoogle Scholar
  54. 54.
    Chai S H, Wang H P, Liang Y, Xu B Q. Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5 catalyst. Journal of Catalysis, 2007, 250(2): 342–349CrossRefGoogle Scholar
  55. 55.
    Atia H, Armbruster U, Martin A. Dehydration of glycerol in gas phase using heteropoly acid catalysts as active compounds. Journal of Catalysis, 2008, 258(1): 71–82CrossRefGoogle Scholar
  56. 56.
    Deleplanque J, Dubois J L, Devaux J F, Ueda W. Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 2010, 157 (1-4): 351–358CrossRefGoogle Scholar
  57. 57.
    Possato L G, Diniz R N, Garetto T, Pulcinelli S H, Santilli C V, Martins L. A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. Journal of Catalysis, 2013, 300: 102–112CrossRefGoogle Scholar
  58. 58.
    Zhang H, Hu Z, Huang L, Zhang H, Song K, Wang L, Shi Z, Ma J, Zhuang Y, Shen W, et al. Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: Effects of mesoporosity and acidity. ACS Catalysis, 2015, 5(4): 2548–2558CrossRefGoogle Scholar
  59. 59.
    Aramburo L R, Karwacki L, Cubillas P, Asahina S, de Winter D A M, Drury M R, Buurmans I L C, Stavitski E, Mores D, Daturi M, et al. The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(49): 13773–13781Google Scholar
  60. 60.
    Gonzalez M D, Cesteros Y, Salagre P. Establishing the role of Bronsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites. Applied Catalysis A, General, 2013, 450: 178–188CrossRefGoogle Scholar
  61. 61.
    Melero J A, Vicente G, Paniagua M, Morales G, Munoz P. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts. Bioresource Technology, 2012, 103(1): 142–151CrossRefGoogle Scholar
  62. 62.
    Melero J A, Vicente G, Morales G, Paniagua M, Moreno J M, Roldan R, Ezquerro A, Perez C. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Applied Catalysis A, General, 2008, 346(1-2): 44–51CrossRefGoogle Scholar
  63. 63.
    Gu Y, Azzouzi A, Pouilloux Y, Jerome F, Barrault J. Heterogeneously catalyzed etherification of glycerol: New pathways for transformation of glycerol to more valuable chemicals. Green Chemistry, 2008, 10(2): 164–167CrossRefGoogle Scholar
  64. 64.
    Clacens J M, Pouilloux Y, Barrault J. Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Applied Catalysis A, General, 2002, 227(1-2): 181–190CrossRefGoogle Scholar
  65. 65.
    Saxena S K, Al-Muhtaseb A H, Viswanadham N. Enhanced production of high octane oxygenates from glycerol etherification using the desilicated BEA zeolite. Fuel, 2015, 159: 837–844CrossRefGoogle Scholar
  66. 66.
    Hook J M, Mander L N. Recent developments in the birch reduction of aromatic-compounds-applications to the synthesis of natural products. Natural Product Reports, 1986, 3(1): 35–85CrossRefGoogle Scholar
  67. 67.
    Hoang T Q, Zhu X, Danuthai T, Lobban L L, Resasco D E, Mallinson R G. Conversion of glycerol to alkyl-aromatics over zeolites. Energy & Fuels, 2010, 24(7): 3804–3809CrossRefGoogle Scholar
  68. 68.
    Xiao W, Wang F, Xiao G. Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. RSC Advances, 2015, 5(78): 63697–63704CrossRefGoogle Scholar
  69. 69.
    Do P T M, McAtee J R, Watson D A, Lobo R F. Elucidation of Diels-Alder reaction network of 2,5-dimethylfuran and ethylene on HY zeolite catalyst. ACS Catalysis, 2013, 3(1): 41–46CrossRefGoogle Scholar
  70. 70.
    Kim J C, Kim T W, Kim Y, Ryoo R, Jeong S Y, Kim C U. Mesoporous MFI zeolites as high performance catalysts for Diels-Alder cycloaddition of bio-derived dimethylfuran and ethylene to renewable p-xylene. Applied Catalysis B: Environmental, 2017, 206: 490–500CrossRefGoogle Scholar
  71. 71.
    Zhang X H, Lin L, Zhang T, Liu H, Zhang X. Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts. Chemical Engineering Journal, 2016, 284: 934–941CrossRefGoogle Scholar
  72. 72.
    Lari G M, Puertolas B, Frei M S, Mondelli C, Perez-Ramírez J. Hierarchical NaY zeolites for lactic acid dehydration to acrylic acid. ChemCatChem, 2016, 8(8): 1507–1514CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry of Zhejiang Province and Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Biomass Chemical Engineering of Ministry of EducationZhejiang UniversityHangzhouChina

Personalised recommendations