Advertisement

Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3

Research Article
  • 21 Downloads

Abstract

This study described a template-free method for the synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts. The promoting effect of Mn doping and the hierarchically macro-mesoporous architecture on TiO2 based catalysts was also investigated for the selective reduction of NO with NH3. The results show that the catalytic performance of TiO2 based catalysts was improved greatly after Mn doping. Meanwhile, the Mn-TiO2 catalyst with the hierarchically macro-mesoporous architecture has a better catalytic activity than that without such an architecture.

Keywords

titania hierarchically macro-mesoporous structure Mn-doping selective catalytic reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was carried out in the framework of a program for Changjiang Scholars and Innovative Research Team (IRT_15R52) of the Chinese Ministry of Education. B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents”, the Chinese Ministry of Education for a “Changjiang Chaire Professor” position and a Clare Hall Life Membership at the Clare Hall College and the financial support of the Department of Chemistry, University of Cambridge. L.H. CHEN acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work was also financially supported by the National Natural Science Foundation of China (Grant Nos. 21671155 and U1663225), Scientific Research Foundation for the Returned Oversea Chinese Scholars, State Education Ministry ([2015]311), Hubei Provincial Natural Science Foundation (2015CFB428).

References

  1. 1.
    Fu M F, Li C T, Lu P, Qu L, Zhang M Y, Zhou Y, Yu M G, Fang Y. A review on selective catalytic reduction of NOx by supported catalysts at 100?300 °C-catalysts, mechanism, kinetics. Catalysis Science & Technology, 2014, 4(1): 14–25CrossRefGoogle Scholar
  2. 2.
    Xiong S C, Xiao X, Liao Y, Dang H, Shan W P, Yang S J. Global kinetic study of NO reduction by NH3 over V2O5-WO3/TiO2: Relationship between the SCR performance and the key factors. Industrial & Engineering Chemistry Research, 2015, 54(44): 11011–11023CrossRefGoogle Scholar
  3. 3.
    Lietti L, Alemany J L, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F. Reactivity of V2O5-WO3/TiO2 catalysts in the selective catalytic reduction of nitric oxide by ammonia. Catalysis Today, 1996, 29(1-4): 143–148CrossRefGoogle Scholar
  4. 4.
    Lietti L, Nova I, Ramis G, Dall’Acqua L, Busca G, Giamello E, Forzatti P, Bregani F. Characterization and reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts. Journal of Catalysis, 1999, 187 (2): 419–435CrossRefGoogle Scholar
  5. 5.
    Buscaa G, Liettib L, Ramisa G, Bertic F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental, 1998, 18(1): 1–36CrossRefGoogle Scholar
  6. 6.
    Heck R M. Catalytic abatement of nitrogen oxides–stationary applications. Catalysis Today, 1999, 53(4): 519–523CrossRefGoogle Scholar
  7. 7.
    Carja G, Kameshima Y, Okada K, Madhusoodana C D. Mn-Ce/ZSM-5 as a new superior catalyst for NO reduction with NH3. Applied Catalysis B: Environmental, 2007, 73(1-2): 60–64CrossRefGoogle Scholar
  8. 8.
    Tang X L, Hao J M, Yi H H, Li J H. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts. Catalysis Today, 2007, 126(3): 406–411CrossRefGoogle Scholar
  9. 9.
    Went G T, Leu L J, Rosin R R, Bell A T. The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3. Journal of Catalysis, 1992, 134(2): 492–505CrossRefGoogle Scholar
  10. 10.
    Went G T, Leu L J, Bell A T. Quantitative structural analysis of dispersed vanadia species in TiO2(anatase)-supported V2O5. Journal of Catalysis, 1992, 134(2): 479–491CrossRefGoogle Scholar
  11. 11.
    Alemany L J, Berti F, Busca G, Ramis G, Robba D, Toledo G P, Trombetta M. Characterization and composition of commercial V2O5-WO3-TiO2 SCR catalysts. Applied Catalysis B: Environmental, 1996, 10(4): 299–311CrossRefGoogle Scholar
  12. 12.
    Chen J P, Yang R T. Selective catalytic reduction of NO with NH3 on SO4 2-/TiO2 superacid catalyst. Journal of Catalysis, 1993, 139 (1): 277–288CrossRefGoogle Scholar
  13. 13.
    Saur O, Bensitel M, Mohammed S, Lavalley J C, Tripp C P, Morrow B A. The structure and stability of sulfated alumina and titania. Journal of Catalysis, 1986, 99(1): 104–110CrossRefGoogle Scholar
  14. 14.
    Wallin M, Forser S, Thormählen P, Skoglungh M. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia. Industrial & Engineering Chemistry Research, 2004, 43(24): 7723–7731CrossRefGoogle Scholar
  15. 15.
    Kijlstra W S, Brands D S, Poels E K, Bliek A. Mechanism of the selective catalytic reduction of NO by NH3 over MnOx/Al2O3. Journal of Catalysis, 1997, 171(1): 208–218CrossRefGoogle Scholar
  16. 16.
    Kim Y J, Kwon H J, Nam I, Choung J W, Kil J K, Kim H, Cha M, Yeo G K. High deNOx performance of Mn/TiO2 catalyst by NH3. Catalysis Today, 2010, 151(3): 244–250CrossRefGoogle Scholar
  17. 17.
    Wu Z B, Jiang B Q, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental, 2008, 79(4): 347–355CrossRefGoogle Scholar
  18. 18.
    Jiang B Q, Liu Y, Wu Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. Journal of Hazardous Materials, 2009, 162(2-3): 1249–1254CrossRefGoogle Scholar
  19. 19.
    Thirupathi B, Smirniotis P G. Nickel-doped Mn/TiO2 as an efficient catalyst for the low-temperature SCR of NO with NH3: Catalytic evaluation and characterizations. Journal of Catalysis, 2012, 288: 74–83CrossRefGoogle Scholar
  20. 20.
    Sun M H, Huang S Z, Chen L H, Li Y, Yang X Y, Yuang Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45(12): 3479–3563CrossRefGoogle Scholar
  21. 21.
    Huang J H, Tong Z Q, Huang Y, Zhang J F. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Applied Catalysis B: Environmental, 2008, 78(3): 309–314CrossRefGoogle Scholar
  22. 22.
    Yu J, Guo F, Wang Y L, Zhu J H, Liu Y Y, Su F B, Gao S Q, Xu G W. Sulfur poisoning resistant mesoporous Mn-base catalyst for lowtemperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2010, 95(1): 160–168CrossRefGoogle Scholar
  23. 23.
    Shi Y N, Chen S, Sun H, Shu Y, Quan X. Low-temperature selective catalytic reduction of NOx with NH3 over hierarchically macromesoporous Mn/TiO2. Catalysis Communications, 2013, 42: 10–13CrossRefGoogle Scholar
  24. 24.
    Fang C, Shi L Y, Li H R, Huang L, Zhang J P, Zhang D S. Creating hierarchically macro-/mesoporous Sn/CeO2 for the selective catalytic reduction of NO with NH3. RSC Advances, 2016, 6(82): 78727–78736CrossRefGoogle Scholar
  25. 25.
    Zhang J F, Huang Y, Chen X. Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica. Journal of Natural Gas Chemistry, 2008, 17(3): 273–277CrossRefGoogle Scholar
  26. 26.
    Schill L, Putluru S, Fehrmann R, Jensen A D. Low-temperature NH3-SCR of NO on mesoporous Mn0.6Fe0.4/TiO2 prepared by a hydrothermal method. Catalysis Letters, 2014, 144(3): 395–402CrossRefGoogle Scholar
  27. 27.
    Zhang L, Zhang D S, Zhang J P, Cai S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y. Design of meso-TiO2@MnOx-CeOx/CNTs with a core-shell structure as DeNOx catalysts: Promotion of activity, stability and SO2-tolerance. Nanoscale, 2013, 5(20): 9821–9829CrossRefGoogle Scholar
  28. 28.
    Catillon-Mucherie S, Ammari F, Krafft J, Lauron-Pernot H, Touroude R, Louis C. Preparation of coimpregnated Cu-Zn/SiO2 catalysts: Influence of the drying step on metallic particle size and on Cu0?ZnII interactions. Journal of Physical Chemistry C, 2007, 111(31): 11619–11626CrossRefGoogle Scholar
  29. 29.
    Monshi A, ForoughiMR, MonshiMR. Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World Journal of Nano Science and Engineering, 2012, 2(3): 154–160CrossRefGoogle Scholar
  30. 30.
    Blin J, Léonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewandte Chemie, 2003, 42(25): 2872–2875CrossRefGoogle Scholar
  31. 31.
    Deng WH, Toepke MW, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65CrossRefGoogle Scholar
  32. 32.
    Dapsens P Y, Hakim S H, Su B L, Shanks B H. Direct observation of macropore self-formation in hierarchically structured metal oxides. Chemical Communications, 2010, 46(47): 8980–8982CrossRefGoogle Scholar
  33. 33.
    Collins A, Carriazo D, Davis S A, Mann S. Spontaneous templatefree assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569CrossRefGoogle Scholar
  34. 34.
    Pappas D K, Boningari T, Boolcchand P, Smirniotis P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3. Journal of Catalysis, 2016, 334: 1–13CrossRefGoogle Scholar
  35. 35.
    Smirniotis P G, Sreekanth P M, Peña D A, Jenkins R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research, 2006, 45(19): 6436–6443CrossRefGoogle Scholar
  36. 36.
    Choi H J, Kim S S, Hong S C. Improving the activity of Mn/TiO2 catalysts through control of the pH and valence state of Mn during their preparation. Journal of the Air & Waste Management Association, 2012, 62(3): 362–369CrossRefGoogle Scholar
  37. 37.
    Kang M, Yeon T H, Park E D, Yie J E, Kim J M. Novel MnOx catalysts for NO reduction at low temperature with ammonia. Catalysis Letters, 2006, 106(1): 77–80CrossRefGoogle Scholar
  38. 38.
    Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the lowtemperature SCR of NOx under oxygen-rich conditions. Journal of Catalysis, 2015, 325: 145–155CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Material Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina
  3. 3.Laboratory of Inorganic Materials ChemistryUnivernisity of NamurNamurBelgium
  4. 4.Clare HallUniversity of CambridgeCambridgeUK

Personalised recommendations