Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 184–193 | Cite as

Micronization of curcumin with biodegradable polymer by supercritical anti-solvent using micro swirl mixer

  • Kimthet Chhouk
  • Wahyudiono
  • Hideki Kanda
  • Shin-Ichro Kawasaki
  • Motonobu Goto
Research Article

Abstract

Curcumin is a hydrophobic polyphenol compound exhibiting a wide range of biological activities such as anti-inflammatory, anti-bacterial, anti-fungal, anti-carcinogenic, anti-human immunodeficiency virus, and antimicrobial activity. In this work, a swirl mixer was employed to produce the micronized curcumin with polyvinylpyrrolidone (PVP) by the supercritical anti-solvent process to improve the bioavailability of curcumin. The effects of operating parameters such as curcumin/PVP ratio, feed concentration, temperature, pressure, and CO2 flow rate were investigated. The characterization and solubility of particles were determined by using scanning electron microscopy, Fourier Transform Infrared spectroscopy, and ultra-violet-visible spectroscopy. The result shows that the optimal condition for the production of curcumin/PVP particles is at curcumin/PVP ratio of 1:30, feed concentration of 5 mg·mL−1, temperature of 40 °C, pressure of 15 MPa, and CO2 flow rate of 15 mL·min−1. Moreover, the dissolution of curcumin/PVP particles is faster than that of raw curcumin.

Keywords

micronization curcumin polyvinylpyrrolidone supercritical anti-solvent swirl mixer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by ASEAN University Network for Southeast Asia Engineering Education Development Network (AUN/SEED-Net) project through the Japan International Cooperation Agency (JICA) and the Precursory Research for Embryonic Science and Technology Program of the Japan Science and Technology Agency (JST).

References

  1. 1.
    Moghadamtousi S Z, Kadir H A, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Research Internaitonal, 2014, 2014: 1–12CrossRefGoogle Scholar
  2. 2.
    Anand P, Kunnumakkara A B, Newman R A, Aggarwal B B. Bioavailability of curcumin: Problems and promise. Molecular Pharmaceutics, 2007, 4(6): 807–818CrossRefGoogle Scholar
  3. 3.
    Montes A, Gordillo M D, Pereyra C, Martínez de la Ossa E J. Polymer and ampicillin co-precipitation by supercritical antisolvent process. Journal of Supercritical Fluids, 2012, 63: 92–98CrossRefGoogle Scholar
  4. 4.
    Fernández-Ponce MT, Masmoudi Y, Djerafi R, Casas L, Mantell C, Monrtínez de la Ossa E, Badens E. Particle design applied to quercetin using supercritical anti-solvent techniques. Journal of Supercritical Fluids, 2015, 105: 119–127CrossRefGoogle Scholar
  5. 5.
    Adami R, Capua A D, Reverchon E. Supercritical assisted atomization for the production of curcumin-biopolymer microspheres. Powder Technology, 2017, 305: 455–461CrossRefGoogle Scholar
  6. 6.
    Zabihi F, Xin N, Jia J, Chen T, Zhao Y. High yield and high loading preparation of curcumin-PLGA nanoparticles using a modified supercritical antisolvent technique. Industrial & Engineering Chemistry Research, 2014, 53(15): 6569–6574CrossRefGoogle Scholar
  7. 7.
    Ha E S, Choo G H, Beak I H, Kim M S. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical anti-solvent coprecipitation. Molecules (Basel, Switzerland), 2014, 19(12): 20325–20339CrossRefGoogle Scholar
  8. 8.
    Zahran F, Cabañas A, Cheda J A R, Renuncio J A R, Pando C. Dissolution rate enhancement of anti-inflammatory drug diflunisal by coprecipitation with a biocompaticle polymer using carbon dioxide as a supercritical fluid antisolvent. Journal of Supercritical Fluids, 2014, 88: 56–65CrossRefGoogle Scholar
  9. 9.
    Prosapio V, De Macro I, Scognamiglio M, Reverchon E. Folic acid-PVP nanostructured composite microparticles by supercritical antisolvent precipitation. Chemical Engineering Journal, 2015, 277: 286–294CrossRefGoogle Scholar
  10. 10.
    Kurniawansyah F, Mammucari R, Foster N R. Inhalable curcumin formulations by supercritical technology. Powder Technology, 2015, 284: 289–298CrossRefGoogle Scholar
  11. 11.
    Prosapio V, De Marco I, Reverchon E. PVP/corticosteroid microspheres produced by supercritical antisolvent coprecipitation. Chemical Engineering Journal, 2016, 292: 264–275CrossRefGoogle Scholar
  12. 12.
    Montes A, Wehner L, Pereyra C, Martínez De La Ossa E J. Generation of microparticles of ellagic acid by supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 116: 101–110CrossRefGoogle Scholar
  13. 13.
    Prosapio V, Reverchon E, De Marco I. Formulation of PVP/nimesulide microspheres by supercritical antisolvent coprecipitation. Journal of Supercritical Fluids, 2016, 118: 19–26CrossRefGoogle Scholar
  14. 14.
    Montes A, Wehner L, Pereyra C, De La Ossa E J M. Mangiferin nanoparticles precipitation by supercritical antisolvent process. Journal of Supercritical Fluids, 2016, 112: 44–50CrossRefGoogle Scholar
  15. 15.
    Xie M, Li Y, Zao Z, Chen A, Li J, Hu J, Li G, Li Z. Solubility enhancement of curcumin via supercritical CO2 based silk fibroin carrier. Journal of Supercritical Fluids, 2015, 103: 1–9CrossRefGoogle Scholar
  16. 16.
    Jia J, Song N, Gai Y, Zhang L, Zhao Y. Release-controlled curcumin proliposome produced by ultrasound-assisted supercritical antisolvent method. Journal of Supercritical Fluids, 2016, 113: 150–157CrossRefGoogle Scholar
  17. 17.
    Pedro A S, Villa S D, Caliceti P, De Melo S A B V, Albuquerque E C, Bertucco A, Salmaso S. Curcumin-loaded solid lipid particles by PGSS technology. Journal of Supercritical Fluids, 2016, 107: 534–541CrossRefGoogle Scholar
  18. 18.
    Baldino L, Cardea S, Reverchon E. Biodegradable membranes loaded with curcumin to be used as engineered independent devices in active packaging. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 518–526CrossRefGoogle Scholar
  19. 19.
    Kawasaki S, Sue K, Ookawara R, Wakashima Y, Suzuki A. Development of novel micro swirl mixer for producing fine metal oxide nanoparticles by continuous supercritical hydrothermal method. Journal of Oleo Science, 2010, 59(10): 557–562CrossRefGoogle Scholar
  20. 20.
    Patomchaiviwat V, Paeratakul O, Kulvanich P. Formation of inhalable rifampicin-poly(L-lactide) microparticles by supercritical anti-solvent process. America Association of Pharmaceutical Scientists, 2008, 9(4): 1119–1129Google Scholar
  21. 21.
    Reverchon E, De Marcro I, Della Porta G. Tailoring of nano-and micro-particle of some superconductor precursors by supercritical antisolvent precipitation. Journal of Supercritical Fluids, 2002, 23 (1): 81–87CrossRefGoogle Scholar
  22. 22.
    De Marco I, Reverchon E. Influence of pressure, temperature, and concentration on the mechanisms of particle precipitation in supercritical antisolvent micronization. Journal of Supercritical Fluids, 2011, 58(2): 295–302CrossRefGoogle Scholar
  23. 23.
    Anwar M, Ahmad I, Warsi M H, Mohapatra S, Ahmad N, Akhter S, Ali A, Almad F J. Experimental investigation and oral bioavailability enhancement of nano-sized curcumin by using supercritical anti-solvent process. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96: 162–172CrossRefGoogle Scholar
  24. 24.
    Li Y, Yu Y, Wang H, Zhao F. Effect of process parameters on the recrystallization and the size control of puerarin using the supercritical fluid antisolvent process. Asian Journal of Pharmaceutical Sciences, 2016, 11(2): 281–291CrossRefGoogle Scholar
  25. 25.
    Li W, Liu G, Li L, Wu J, Lü Y, Jiang Y. The effect of process parameters on co-precipitation of paclitaxel and Poly(L-lactic acid) by supercritical antisolvent. Chinese Journal of Chemical Engineering, 2012, 20(4): 803–813CrossRefGoogle Scholar
  26. 26.
    Miguel F, Martín A, Gamse T, Cocero M J. Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. Journal of Supercritical Fluids, 2006, 36(3): 225–235CrossRefGoogle Scholar
  27. 27.
    Su C, Lo W, Lien L. Micronization of fluticasone propionate using supercritical antisolvent process. Chemical Engineering & Technology, 2011, 34(4): 535–541CrossRefGoogle Scholar
  28. 28.
    Careno S, Boutin O, Badens E. Drug recrystallization using supercritical anti-solvent (SAS) process with impinging jets: Effect of process parameters. Journal of Crystal Growth, 2012, 342(1): 34–41CrossRefGoogle Scholar
  29. 29.
    Kim M, Lee S, Park J, Woo J, Hwang S. Micronization of cilostazol using supercritical antisolvent (SAS) process: Effect of process parameters. Powder Technology, 2007, 177(2): 64–70CrossRefGoogle Scholar
  30. 30.
    Reverchon E. Supercritical antisolvent precipitation of micro-and nano-particles. Journal of Supercritical Fluids, 1999, 15(1): 1–21CrossRefGoogle Scholar
  31. 31.
    Martín A, Mattea F, Gutiérrez K, Miguel F, Cocero M J. Coprecipitation of carotenoids and bio-polymers with supercritical anti-solvent process. Journal of Supercritical Fluids, 2007, 41(1): 138–147CrossRefGoogle Scholar
  32. 32.
    Yen F, Wu T, Tzeng C W, Lin L, Lin C. Curcumin nanoparticle improve the physicochemical properties of curcumin and effectively enhance its antioxidant and antithepatoma activities. Journal of Agriculture and Food Chemistry, 2010, 58(12): 73–76-7382CrossRefGoogle Scholar
  33. 33.
    Uzun I N, Sipahigil O, Dinçer S. Coprecipitation of cefuroxime axetil-PVP composite microparticles by batch supercritical antisolvent process. Journal of Supercritical Fluids, 2011, 55(3): 1059–1069CrossRefGoogle Scholar
  34. 34.
    Perrut M, Jung J, Leboeuf F. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes: Part 1: Micronization of neat particles. International Journal of Pharmaceutics, 2005, 288(1): 3–10CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNagoya UniversityNagoyaJapan
  2. 2.Department of Chemical Engineering and Food TechnologyInstitute of Technology of CambodiaPhnom PenhCambodia
  3. 3.Department of Materials Process EngineeringNagoya UniversityNagoyaJapan
  4. 4.Research Institute for Chemical Engineering Process TechnologyNational Institute of Advanced Industrial Science and TechnologySendaiJapan

Personalised recommendations