Advertisement

Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation

  • Yuxia Jiang
  • Donge Wang
  • Zhendong Pan
  • Huaijun Ma
  • Min Li
  • Jiahe Li
  • Anda Zheng
  • Guang Lv
  • Zhijian Tian
Research Article
  • 53 Downloads

Abstract

Flower-like intercalated MoS2 nanomaterials have been successfully synthesized via a microemulsionmediated hydrothermal (MMH) method, and characterized by X-ray diffraction, Raman spectroscopy, element analysis, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy in detail. Their catalytic performance for anthracene hydrogenation was evaluated using a slurry-bed batch reactor with an initial hydrogen pressure of 80 bar at 350 °C for 4 h. The intercalated MoS2 nanoflowers synthesized from Na2MoO4 (MoS2-S) and H2MoO4 (MoS2-A) as molybdenum precursors have diameters of about 150 and 50 nm, respectively. MoS2 nanosheets on MoS2-S and MoS2-A possess stacking layer numbers of 5–10 and 2–5, and slab lengths of about 15 and 10 nm, respectively. The interlayer distances of MoS2-S and MoS2-A are both enlarged from 0.62 nm to about 0.95 nm due to the intercalation of NH4 + and surfactant molecules. The MoS2 nanoflowers have high catalytic activities for anthracene hydrogenation. The selectivity for octahydroanthracene, a deeply hydrogenated product, over MoS2-A is 89.8%, which is 31.0 times higher than that over commercial bulk MoS2. Fully hydrogenated product (perhydroanthracene) was also detected over MoS2 nanoflowers with a selectivity of 3.7%. The enhanced hydrogenation activities of MoS2 nanoflowers can be ascribed to the high exposure of catalytic active sites, resulting from the smaller particle size, fewer stacking layer, shorter slab length and enlarged interlayer distance of MoS2 nanoflowers compared with commercial bulk MoS2. In addition, a possible growth mechanism of MoS2 nanoflowers synthesized via the MMH method was proposed.

Keywords

microemulsion intercalated MoS2 catalytic hydrogenation active sites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA07020300) and the National Natural Science Foundation of China (Grant No. 21303186).

References

  1. 1.
    Hershfinkel M, Gheber L A, Volterra V, Hutchison J L, Margulis L, Tenne R. Nested polyhedra of MX3 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. Journal of the American Chemical Society, 1994, 116 (5): 1914–1917CrossRefGoogle Scholar
  2. 2.
    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013, 5(4): 263–275CrossRefGoogle Scholar
  3. 3.
    Bano S, Ahmad S, Woo S, Saleem F. Heavy oil hydroprocessing: Effect of nanostructured morphologies of MoS2 as catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114(2): 473–487CrossRefGoogle Scholar
  4. 4.
    Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11(3): 218–230CrossRefGoogle Scholar
  5. 5.
    Daage M, Chianelli R R. Structure-function relations in molybdenum sulfide catalysts—the rim-edge model. Journal of Catalysis, 1994, 149(2): 414–427CrossRefGoogle Scholar
  6. 6.
    Zhang N, Li H, Yu K, Zhu Z. Differently structured MoS2 for the hydrogen production application and a mechanism investigation. Journal of Alloys and Compounds, 2016, 685: 65–69CrossRefGoogle Scholar
  7. 7.
    Iwata Y, Araki Y, Honna K, Miki Y, Sato K, Shimada H. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils. Catalysis Today, 2001, 65 (2): 335–341CrossRefGoogle Scholar
  8. 8.
    Li Z, He J,Wang H,Wang B, Ma X. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Frontiers of Chemical Science and Engineering, 2015, 9(1): 33–39CrossRefGoogle Scholar
  9. 9.
    Salvatore G A, Münzenrieder N, Barraud C, Petti L, Zysset C, Büthe L, Ensslin K, Tröster G. Fabrication and transfer of flexible fewlayers MoS2 thin film transistors to any arbitrary substrate. ACS Nano, 2013, 7(10): 8809–8815CrossRefGoogle Scholar
  10. 10.
    Zheng J, Zhang H, Dong S, Liu Y, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping Loh K. High yield exfoliation of twodimensional chalcogenides using sodium naphthalenide. Nature Communications, 2014, 5: 2995Google Scholar
  11. 11.
    Nath M, Govindaraj A, Rao C N R. Simple synthesis of MoS2 and WS2 nanotubes. Advanced Materials, 2001, 13(4): 283–286CrossRefGoogle Scholar
  12. 12.
    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325CrossRefGoogle Scholar
  13. 13.
    Sheng B, Liu J, Li Z, Wang M, Zhu K, Qiu J, Wang J. Effects of excess sulfur source on the formation and photocatalytic properties of flower-like MoS2 spheres by hydrothermal synthesis. Materials Letters, 2015, 144: 153–156CrossRefGoogle Scholar
  14. 14.
    Liu M, Li X, Xu Z, Li B, Chen L, Shan N. Synthesis of chain-like MoS2 nanoparticles in W/O reverse microemulsion and application in photocatalysis. Chinese Science Bulletin, 2012, 57(30): 3862–3866CrossRefGoogle Scholar
  15. 15.
    Gong H, Zheng F, Li Z, Li Y, Hu P, Gong Y, Song S, Zhan F, Zhen Q. Hydrothermal preparation of MoS2 nanoflake arrays on Cu foil with enhanced supercapacitive property. Electrochimica Acta, 2017, 227: 101–109CrossRefGoogle Scholar
  16. 16.
    Ye L, Wu C, Guo W, Xie Y. MoS2 hierarchical hollow cubic cages assembled by bilayers: One-step synthesis and their electrochemical hydrogen storage properties. Chemical Communications, 2006, 45 (45): 4738–4740CrossRefGoogle Scholar
  17. 17.
    Lu X, Lin Y, Dong H, Dai W, Chen X, Qu X, Zhang X. One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction. Scientific Reports, 2017, 7: 42309CrossRefGoogle Scholar
  18. 18.
    Akram H, Mateos-Pedrero C, Gallegos-Suárez E, Guerrero-Ruíz A, Chafik T, Rodríguez-Ramos I. Effect of electrolytes nature and concentration on the morphology and structure of MoS2 nanomaterials prepared using one-pot solvothermal method. Applied Surface Science, 2014, 307(2): 319–326CrossRefGoogle Scholar
  19. 19.
    Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y, Tian Z, Lu A. Surfactantassisted hydrothermally synthesized MoS2 samples with controllable morphologies and structures for anthracene hydrogenation. Chinese Journal of Catalysis, 2017, 38(3): 597–606CrossRefGoogle Scholar
  20. 20.
    Yan Y, Xia B, Ge X, Liu Z, Wang J, Wang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution. ACS Applied Materials & Interfaces, 2013, 5 (24): 12794–12798CrossRefGoogle Scholar
  21. 21.
    Chikan V, Kelley D F. Size-dependent spectroscopy of MoS2 nanoclusters. Journal of Physical Chemistry B, 2002, 106(15): 3794–3804CrossRefGoogle Scholar
  22. 22.
    Yu H, Liu Y, Brock S L. Synthesis of discrete and dispersible MoS2 nanocrystals. Inorganic Chemistry, 2008, 47(5): 1428–1434CrossRefGoogle Scholar
  23. 23.
    Xiong Y, Xie Y, Li Z, Li X, Zhang R. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres. Chemical Physics Letters, 2003, 382(1-2): 180–185CrossRefGoogle Scholar
  24. 24.
    Marchand K, Tarret M, Lechaire J, Normand L, Kasztelan S, Cseri T. Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: An electron microscopy study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2003, 214(1): 239–248CrossRefGoogle Scholar
  25. 25.
    Ganguli A K, Ganguly A, Vaidya S. Microemulsion-based synthesis of nanocrystalline materials. Chemical Society Reviews, 2010, 39 (2): 474–485CrossRefGoogle Scholar
  26. 26.
    Wu M, Long J, Huang A, Luo Y, Feng S, Xu R. Microemulsionmediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles. Langmuir, 1999, 15(26): 8822–8825CrossRefGoogle Scholar
  27. 27.
    Yang L, Liu L, Xiao D, Zhu J. Preparation and characterization of ZnSe nanocrystals by a microemulsion-mediated method. Materials Letters, 2012, 72: 113–115CrossRefGoogle Scholar
  28. 28.
    Yin J, Lu X, Dong Q. The experiment and theory studies of silver substituting cadmium in CdS quantum dots. Journal of Alloys and Compounds, 2017, 695: 1301–1306CrossRefGoogle Scholar
  29. 29.
    Gao M R, Chan M K Y, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nature Communications, 2015, 6: 7493CrossRefGoogle Scholar
  30. 30.
    Li J, Wang D, Ma H, Pan Z, Jiang Y, Li M, Tian Z. Ionic liquid assisted hydrothermal synthesis of hollow core/shell MoS2 microspheres. Materials Letters, 2015, 160: 550–554CrossRefGoogle Scholar
  31. 31.
    Li M, Wang D, Li J, Pan Z, Ma H, Jiang Y, Tian Z. Facile hydrothermal synthesis of MoS2 nano-sheets with controllable structures and enhanced catalytic performance for anthracene hydrogenation. RSC Advances, 2016, 6(75): 71534–71542CrossRefGoogle Scholar
  32. 32.
    Wu Z, Tang C, Zhou P, Liu Z, Xu Y, Wang D, Fang B. Enhanced hydrogen evolution catalysis from osmotically swollen ammoniated MoS2. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(24): 13050–13056CrossRefGoogle Scholar
  33. 33.
    Anto Jeffery A, Nethravathi C, Rajamathi M. Two-dimensional nanosheets and layered hybrids of MoS2 and WS2 through exfoliation of ammoniated MS2 (M = Mo,W). Journal of Physical Chemistry C, 2014, 118(2): 1386–1396CrossRefGoogle Scholar
  34. 34.
    Matusinovic Z, Shukla R, Manias E, Hogshead C G, Wilkie C A. Polystyrene/molybdenum disulfide and poly(methyl methacrylate)/ molybdenum disulfide nanocomposites with enhanced thermal stability. Polymer Degradation & Stability, 2012, 97(12): 2481–2486CrossRefGoogle Scholar
  35. 35.
    Frey G L, Tenne R, MatthewsMJ, DresselhausMS, Dresselhaus G. Raman and resonance Raman investigation of MoS2 nanoparticles. Physical Review B: Condensed Matter and Materials Physics, 1999, 60(4): 2883–2892CrossRefGoogle Scholar
  36. 36.
    Wang Z, Ma L, Chen W, Huang G, Chen D,Wang L, Lee J Y. Facile synthesis of MoS2/graphene composites: Effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3(44): 21675–21684CrossRefGoogle Scholar
  37. 37.
    Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. MoS2 and WS2 analogues of graphene. Angewandte Chemie International Edition, 2010, 49(24): 4059–4062CrossRefGoogle Scholar
  38. 38.
    Koroteev V O, Bulusheva L G, Asanov I P, Shlyakhova E V, Vyalikh D V, Okotrub A V. Charge transfer in the MoS2/Carbon nanotube composite. Journal of Physical Chemistry C, 2011, 115 (43): 21199–21204CrossRefGoogle Scholar
  39. 39.
    Lee C, Yan H, Brus L E, Heinz T F, Hone J, Ryu S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano, 2010, 4 (5): 2695–2700CrossRefGoogle Scholar
  40. 40.
    Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G. Curved nanostructures of unsupported and Al2O3-supported MoS2 catalysts: Synthesis and HDS catalytic properties. Applied Catalysis A, General, 2012, 429–430: 92–105CrossRefGoogle Scholar
  41. 41.
    Iwata Y, Sato K, Yoneda T, Miki Y, Sugimoto Y, Nishijima A, Shimada H. Catalytic functionality of unsupported molybdenum sulfide catalysts prepared with different methods. Catalysis Today, 1998, 45(1-4): 353–359CrossRefGoogle Scholar
  42. 42.
    Bellussi G, Rispoli G, Molinari D, Landoni A, Pollesel P, Panariti N, Millini R, Montanari E. The role of MoS2 nano-slabs in the protection of solid cracking catalysts for the total conversion of heavy oils to good quality distillates. Catalysis Science & Technology, 2013, 3(1): 176–182CrossRefGoogle Scholar
  43. 43.
    Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z. Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): Structural characteristics and markedly enhanced properties. RSC Advances, 2012, 2(31): 11695–11703CrossRefGoogle Scholar
  44. 44.
    Zhou K, Liu J, Wang B, Zhang Q, Shi Y, Jiang S, Hu Y, Gui Z. Facile preparation of poly(methyl methacrylate)/MoS2 nanocomposites via in situ emulsion polymerization. Materials Letters, 2014, 126: 159–161CrossRefGoogle Scholar
  45. 45.
    Barzegar-Bafrooei H, Ebadzadeh T, Tazike M. A survey on dispersion mechanisms of multi-walled carbon nanotubes in an aqueous media by UV-Vis, raman spectroscopy, TGA, and FTIR. Journal of Dispersion Science and Technology, 2012, 33(7): 955–959CrossRefGoogle Scholar
  46. 46.
    Boyjoo Y, Wang M, Pareek V K, Liu J, Jaroniec M. Synthesis and applications of porous non-silica metal oxide submicrospheres. Chemical Society Reviews, 2016, 45(21): 6013–6047CrossRefGoogle Scholar
  47. 47.
    Yang T, Ling H, Lamonier J F, Jaroniec M, Huang J, Monteiro M J, Liu J. A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. NPG Asia Materials, 2016, 8(2): e240CrossRefGoogle Scholar
  48. 48.
    Pinilla J L, Purón H, Torres D, Suelves I, Millan M. Ni-MoS2 supported on carbon nanofibers as hydrogenation catalysts: Effect of support functionalisation. Carbon, 2015, 81: 574–586CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yuxia Jiang
    • 1
    • 2
  • Donge Wang
    • 1
  • Zhendong Pan
    • 1
  • Huaijun Ma
    • 1
  • Min Li
    • 1
    • 2
  • Jiahe Li
    • 1
    • 2
  • Anda Zheng
    • 1
    • 2
  • Guang Lv
    • 1
    • 2
  • Zhijian Tian
    • 1
    • 3
  1. 1.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations