Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 145–154 | Cite as

Atomistic simulations of plasma catalytic processes

Research Article

Abstract

There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.

Keywords

atomic scale simulation plasma-catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Devins J C, Burton M. Formation of hydrazine in electric discharge decomposition of ammonia. Journal of the American Chemical Society, 1954, 76(10): 2618–2626CrossRefGoogle Scholar
  2. 2.
    Henis J M. Nitrogen oxide decomposition process. US Patent 3983021, 1976Google Scholar
  3. 3.
    Neyts E C, Ostrikov K, Sunkara M K, Bogaerts A. Plasma catalysis: Synergistic effects at the nanoscale. Chemical Reviews, 2015, 115(24): 13408–13446CrossRefGoogle Scholar
  4. 4.
    Russ H, Neiger M, Lang J E. Simulation of micro discharges for the optimization of energy requirements for removal of NOx from exhaust gases. IEEE Transactions on Plasma Science, 1999, 27(1): 38–39CrossRefGoogle Scholar
  5. 5.
    Chang J S, Kostov K G, Urashima K, Yamamoto T, Okayasu Y, Kato T, Iwaizumi T, Yoshimura K. Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems. IEEE Transactions on Industry Applications, 2002, 36(5): 1251–1259CrossRefGoogle Scholar
  6. 6.
    Whitehead J C. Plasma-catalysis the known knowns, the known unknowns and the unknown unknowns. Journal of Physics. D, Applied Physics, 2016, 49(24): 243001CrossRefGoogle Scholar
  7. 7.
    Neyts E C, Bogaerts A. Understanding plasma catalysis through modelling and simulation—a review. Journal of Physics. D, Applied Physics, 2014, 47(22): 224010CrossRefGoogle Scholar
  8. 8.
    Voter A F. Parallel replica method for dynamics of infrequent events. Physical Review B: Condensed Matter and Materials Physics, 1998, 57(22): R13985–R13988CrossRefGoogle Scholar
  9. 9.
    Perez D, Uberuaga B P, Voter A F. The parallel replica dynamics method—coming of age. Computational Material Science, 2015, 100, part B, 90–103CrossRefGoogle Scholar
  10. 10.
    Voter A F. A method for accelerating the molecular dynamics simulation of infrequent events. Journal of Chemical Physics, 1997, 106(11): 4665–4677CrossRefGoogle Scholar
  11. 11.
    Voter A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical Review Letters, 1997, 78(20): 3908–3911CrossRefGoogle Scholar
  12. 12.
    Sörensen M R, Voter A F. Temperature-accelerated dynamics simulation of infrequent events. Journal of Chemical Physics, 2000, 112: 9599CrossRefGoogle Scholar
  13. 13.
    Montalenti F, Voter A F. Exploiting past visits or minimum barrier knowledge to gain further boost in the temperature-accelerated dynamics method. Journal of Chemical Physics, 2002, 116(12): 4819CrossRefGoogle Scholar
  14. 14.
    Bal K M, Neyts E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554CrossRefGoogle Scholar
  15. 15.
    Bal K M, Neyts E C. Direct observation of realistic-temperature fuel combustion mechanisms in atomistic simulations. Chemical Science (Cambridge), 2016, 7(8): 5280–5286CrossRefGoogle Scholar
  16. 16.
    Fu C D, Oliveira L F L, Pfaendtner J. Assessing generic collective variables for determining reaction rates in metadynamics simulations. Journal of Chemical Theory and Computation, 2017, 13(3): 968–973CrossRefGoogle Scholar
  17. 17.
    Neyts E C, Brault P. Molecular dynamics simulations for plasmasurface interactions. Plasma Processes and Polymers, 2016, 14(1-2): 1600145CrossRefGoogle Scholar
  18. 18.
    Shibuta Y, Maruyama S. Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method. Chemical Physics Letters, 2003, 382(3-4): 381–386CrossRefGoogle Scholar
  19. 19.
    Ding F, Bolton K, Rosén A. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. Journal of Physical Chemistry B, 2004, 108(45): 17369–17377CrossRefGoogle Scholar
  20. 20.
    Neyts E C, Shibuta Y, van Duin A C T, Bogaerts A. Catalyzed growth of carbon nanotube with definable chirality by hybrid molecular dynamics—force biased Monte Carlo simulations. ACS Nano, 2010, 4(11): 6665–6672CrossRefGoogle Scholar
  21. 21.
    Page A J, Yamane H, Ohta Y, Irle S, Morokuma K. QM/MD simulation of SWNT nucleation on transition-metal carbide nanoparticles. Journal of the American Chemical Society, 2010, 132(44): 15699–15707CrossRefGoogle Scholar
  22. 22.
    Amara H, Bichara C, Ducastelle F. Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition. Physical Review Letters, 2008, 100(5): 056105CrossRefGoogle Scholar
  23. 23.
    Zhao J, Martinez-Limia A, Balbuena P B. Understanding catalysed growth of single-wall carbon nanotubes. Nanotechnology, 2005, 16 (7): S575–S581CrossRefGoogle Scholar
  24. 24.
    Khalilov U, Bogaerts A, Neyts E C. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors. Nature Communications, 2015, 6: 10306CrossRefGoogle Scholar
  25. 25.
    Elliott J A, Shibuta Y, Amara H, Bichara C, Neyts E C. Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, 2013, 5(15): 6662–6676CrossRefGoogle Scholar
  26. 26.
    Page A J, Ding F, Irle S, Morokuma K. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: A review. Reports on Progress in Physics, 2015, 78(3): 036501CrossRefGoogle Scholar
  27. 27.
    Neyts E C. PECVD growth of carbon nanotubes: From experiment to simulation. Journal of Vacuum Science & Technology B Microelectronics and Nanometer Structures, 2012, 30: 030803Google Scholar
  28. 28.
    Meyyappan M. A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal of Physics. D, Applied Physics, 2009, 42(21): 213001CrossRefGoogle Scholar
  29. 29.
    Diega G G, Gilbert D M, Javier A, Perla B B. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth. ACS Nano, 2012, 6(1): 720–735CrossRefGoogle Scholar
  30. 30.
    Diarra M, Zappelli A, Amara H, Ducastelle F, Bichara C. Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth. Physical Review Letters, 2012, 109(18): 185501CrossRefGoogle Scholar
  31. 31.
    Neyts E C, van Duin A C T, Bogaerts A. Insights in the plasma assisted growth of carbon nanotubes through atomic scale simulations: Effect of electric field. Journal of the American Chemical Society, 2012, 134(2): 1256–1260CrossRefGoogle Scholar
  32. 32.
    Mees M J, Pourtois G, Neyts E C, Thijsse B J, Stesmans A. Uniform-acceptance force-bias Monte Carlo method with time scale to study solid-state diffusion. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(13): 134301CrossRefGoogle Scholar
  33. 33.
    Bal K M, Neyts E C. On the time scale associated with Monte Carlo simulations. Journal of Chemical Physics, 2014, 141(20): 204104CrossRefGoogle Scholar
  34. 34.
    Timonova M, Groenewegen J, Thijsse B J. Modeling diffusion and phase transitions by a uniform-acceptance force-bias Monte Carlo method. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(14): 144107CrossRefGoogle Scholar
  35. 35.
    Neyts E C, Bogaerts A. Combining molecular dynamics with Monte Carlo simulations: Implementations and applications. Theoretical Chemistry Accounts, 2013, 132(2): 1320CrossRefGoogle Scholar
  36. 36.
    Neyts E C, Thijsse B J, MeesMJ, Bal KM, Pourtois G. Establishing uniform acceptance in force biased Monte Carlo simulations. Journal of Chemical Theory and Computation, 2012, 8(6): 1865–1869CrossRefGoogle Scholar
  37. 37.
    Neyts E C, van Duin A C T, Bogaerts A. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. Journal of the American Chemical Society, 2011, 133(43): 17225–17231CrossRefGoogle Scholar
  38. 38.
    Kato T, Hatakeyama R. Formation of freestanding single-walled carbon nanotubes by plasma-enhanced CVD. Chemical Vapor Deposition, 2006, 12(6): 345–352CrossRefGoogle Scholar
  39. 39.
    Nozaki T, Karatsu T, Ohnishi K, Okazaki K. A pressure-dependent selective growth of single-walled and multi-walled carbon nanotubes using plasma enhanced chemical vapor deposition. Carbon, 2010, 48(1): 232–238CrossRefGoogle Scholar
  40. 40.
    Neyts E C. On the role of ions in plasma catalytic carbon nanotube growth: A review. Frontiers of Chemical Science and Engineering, 2015, 9(2): 154–162CrossRefGoogle Scholar
  41. 41.
    Neyts E C, Ostrikov K, Han Z J, Kumar S, van Duin A C T, Bogaerts A. Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment. Physical Review Letters, 2013, 110(6): 065501CrossRefGoogle Scholar
  42. 42.
    Neyts E C, Bogaerts A. Ion irradiation for improved graphene network formation in carbon nanotube growth. Carbon, 2014, 77: 790–795CrossRefGoogle Scholar
  43. 43.
    Shariat M, Hosseini S I, Shokri B, Neyts E C. Plasma enhanced growth of single walled carbon nanotubes at low temperature: A reactive molecular dynamics simulation. Carbon, 2013, 65: 269–276CrossRefGoogle Scholar
  44. 44.
    Shariat M, Shokri B, Neyts E C. On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition. Chemical Physics Letters, 2013, 590: 131–135CrossRefGoogle Scholar
  45. 45.
    Chen H L, Lee H M, Chen S H, Chao Y, Chang M B. Review of plasma catalysis on hydrocarbon reforming for hydrogen production—interaction, integration and prospects. Applied Catalysis B: Environmental, 2008, 85(1-2): 1–9CrossRefGoogle Scholar
  46. 46.
    Van Durme J, Dewulf J, Leys C, Van Langenhove H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Applied Catalysis B: Environmental, 2008, 78 (3-4): 324–333CrossRefGoogle Scholar
  47. 47.
    Kim H H, Ogata A. Nonthermal plasma activates catalyst: From current understanding and future prospects. European Physical Journal Applied Physics, 2001, 55(1): 13806CrossRefGoogle Scholar
  48. 48.
    Zhang Y R, Van Laer K, Neyts E C, Bogaerts A. Can plasma be formed in catalyst pores? A modeling investigation. Applied Catalysis B: Environmental, 2016, 185: 56–67CrossRefGoogle Scholar
  49. 49.
    Zhang Y R, Neyts E C, Bogaerts A. Influence of the material dielectric constant on plasma generation inside catalyst pores. Journal of Physical Chemistry C, 2016, 120(45): 25923–25934CrossRefGoogle Scholar
  50. 50.
    Van Laer K, Bogaerts A. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Science & Technology, 2016, 25(1): 015002CrossRefGoogle Scholar
  51. 51.
    Van Laer K, Bogaerts A. Improving the conversion and energy efficiency of carbon dioxide splitting in a zirconia-packed dielectric barrier discharge reactor. Energy Technology (Weinheim), 2015, 3(10): 1038–1044CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Wang H Y, Jiang W, Bogaerts A. Two-dimensional particle-in-cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure. New Journal of Physics, 2015, 17(8): 083056CrossRefGoogle Scholar
  53. 53.
    Neyts E C, Bal K M. Effect of electric fields on plasma catalytic hydrocarbon oxidation from atomistic simulations. Plasma Processes and Polymers, 2017, 14(6): e1600158CrossRefGoogle Scholar
  54. 54.
    Somers W, Bogaerts A, van Duin A C T, Neyts E C. Plasma species interacting with nickel surfaces: Towards an atomic scale understanding of plasma-catalysis. Journal of Physical Chemistry C, 2012, 116(39): 20958–20965CrossRefGoogle Scholar
  55. 55.
    Somers W, Bogaerts A, van Duin A C T, Huygh S, Bal K M, Neyts E C. Temperature influence on the reactivity of plasma species on a nickel catalyst surface: An atomic scale study. Catalysis Today, 2014, 211: 131–136CrossRefGoogle Scholar
  56. 56.
    Somers W, Bogaerts A, van Duin A C T, Neyts E C. Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014, 154-155: 1–8CrossRefGoogle Scholar
  57. 57.
    Neyts E C. Plasma-surface interactions in plasma catalysis. Plasma Chemistry and Plasma Processing, 2016, 36(1): 185–212CrossRefGoogle Scholar
  58. 58.
    Halonen L, Bernasek S L, Nesbitt D J. Reactivity of vibrationally excited methane on nickel surfaces. Journal of Chemical Physics, 2001, 115(12): 5611–5619CrossRefGoogle Scholar
  59. 59.
    Jackson B, Nave S. The dissociative chemisorption of methane on Ni(111): The effects of molecular vibration and lattice motion. Journal of Chemical Physics, 2013, 138(17): 174705CrossRefGoogle Scholar
  60. 60.
    Shirazi M, Neyts E C, Bogaerts A. DFT study of Ni-catalyzed plasma dry reforming of methane. Applied Catalysis B: Environmental, 2017, 205: 605–614CrossRefGoogle Scholar
  61. 61.
    Huygh S, Neyts E C. Adsorption of C and CHx radicals on anatase (001) and the influence of oxygen vacancies. Journal of Physical Chemistry C, 2015, 119(9): 4908–4921CrossRefGoogle Scholar
  62. 62.
    Huygh S, Bogaerts A, Neyts E C. How oxygen vacancies activate CO2 dissociation on TiO2 anatase (001). Journal of Physical Chemistry C, 2016, 120(38): 21659–21669CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Research Group PLASMANT, Department of ChemistryUniversity of AntwerpWilrijk-AntwerpBelgium

Personalised recommendations