Skip to main content
Log in

Shape selective catalysis in methylation of toluene: Development, challenges and perspectives

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Toluene methylation with methanol offers an alternative method to produce p-xylene by gathering methyl group directly from C1 chemical sources. It supplies a “molecular engineering” process to realize directional conversion of toluene/methanol molecules by selective catalysis in complicated methylation system. In this review, we introduce the synthesis method of p-xylene, the development history of methylation catalysts and reaction mechanism, and the effect of reaction condition in para-selective technical process. If constructing p-xylene as the single target product, the major challenge to develop para-selective toluene methylation is to improve the p-xylene selectivity without, or as little as possible, losing the fraction of methanol for methylation. To reach higher yield of p-xylene and more methanol usage in methylation, zeolite catalyst design should consider improving mass transfer and afterwards covering external acid sites by surface modification to get short “micro-tunnels” with shape selectivity. A solid understanding of mass transfer will benefit realizing the aim of converting more methanol feedstock into para-methyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161

    Article  CAS  Google Scholar 

  2. Luo H, Zhao R. A review of China’s PX market in 2015 and a prospect for future. Petroleum & Petrochemical Today, 2016, 24(5): 17–19

    Google Scholar 

  3. Shi J, Wang Y D, Yang W M, Tang Y, Xie Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44: 8877–8903

    Article  CAS  Google Scholar 

  4. Chen Q, Kong D, Yang W. Developmental trends in p-xylene production increasing technology. Petrochemical Technology, 2004, 33(10): 909–915

    CAS  Google Scholar 

  5. Tsai T, Liu S, Wang I. Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 1999, 181(2): 355–398

    Article  CAS  Google Scholar 

  6. Chen N Y, Kaeding W W, Dwyer F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. Journal of the American Chemical Society, 1979, 101(22): 6783–6784

    Article  CAS  Google Scholar 

  7. Young L B, Butter S A, Kaeding W W. Shape Selective Reactions with Zeolite Catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 1982, 76(2): 418–432

    Article  CAS  Google Scholar 

  8. Weisz P B, Frilette V J. Intracrystalline and molecular-shapeselective catalysis by zeolite salts. Journal of Physical Chemistry, 1960, 64(3): 382–382

    Article  CAS  Google Scholar 

  9. Kaeding W W, Chu C C, Young L B, Butter S A. Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. Journal of Catalysis, 1981, 69: 392–398

    Article  CAS  Google Scholar 

  10. Kaeding WW, Young L B, Chu C C. Shape-selective reactions with zeolite catalysts: IV. Alkylation of toluene with ethylene to produce p-ethyltoluene. Journal of Catalysis, 1984, 89(2): 267–273

    Article  CAS  Google Scholar 

  11. Kaeding W W. Shape-selective reactions with zeolite catalysts: V. Alkylation or disproportionation of ethylbenzene to produce p-diethylbenzene. Journal of Catalysis, 1985, 95(2): 512–519

    Article  CAS  Google Scholar 

  12. Cejka J, Corma A, Zones S. Zeolites and Catalysis Synthesis, Reactions and Applications. Weinheim: Wiley-VCH, 2010, 605

    Book  Google Scholar 

  13. Guisnet M, Gilson J P. Zeolites for Cleaner Technologies. London: Imperial College Press, 2002, 19

    Book  Google Scholar 

  14. Svelle S, Visur M, Olsbye U, Saepurahman S, Bjørgen M. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: A review. Topics in Catalysis, 2011, 54(13-15): 897–906

    Article  CAS  Google Scholar 

  15. Vos A M, Rozanska X, Schoonheydt R A, van Santen R A, Hutschka F, Hafner J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. Journal of the American Chemical Society, 2001, 123(12): 2799–2809

    Article  CAS  Google Scholar 

  16. Svelle S, Kolboe S, Olsbye U, Swang O. A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidic zeolites. Journal of Physical Chemistry B, 2003, 107 (22): 5251–5260

    Article  CAS  Google Scholar 

  17. Blaszkowski S R, van Santen R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons. Journal of Physical Chemistry B, 1997, 101(13): 2292–2305

    Article  CAS  Google Scholar 

  18. Boronat M, Martínez C, Corma A. Mechanistic differences between methanol and dimethylether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 2011, 13: 2603–2612

    Article  CAS  Google Scholar 

  19. Wen Z, Yang D, Yang F, Wei Z, Zhu X. Methylation of toluene with methanol over HZSM-5: A periodic density functional theory investigation. Chinese Journal of Catalysis, 2016, 37(11): 1882–1890

    Article  CAS  Google Scholar 

  20. Saepurahman V M, Olsbye U, Bjørgen M, Svelle S. In situ FT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Topics in Catalysis, 2011, 54(16-18): 1293–1301

    Google Scholar 

  21. Brogaard R Y, Henry R, Schuurman Y, Medford A J, Moses P G, Beato P, Svelle S, Nørskov J K, Olsbye U. Methanol-tohydrocarbons conversion: The alkene methylation pathway. Journal of Catalysis, 2014, 314: 159–169

    Article  CAS  Google Scholar 

  22. Li L L, Janik M J, Nie X W, Song C S, Guo X W. Reaction mechanism of toluene methylation with dimethyl carbonate or methanol catalyzed by H-ZSM-5. Acta Physico-Chimica Sinica, 2013, 29(7): 1467–1478

    CAS  Google Scholar 

  23. Jones J A, Iglesia E. Kinetic, spectroscopic, and theoretical assessment of associative and dissociative methanol dehydration routes in zeolites. Angewandte Chemie International Edition, 2014, 53: 12177–12181

    Article  CAS  Google Scholar 

  24. Wang C M, Wang Y D, Du Y J, Yang G, Xie Z K. Similarities and differences between aromatic-based and olefin-based cycles in HSAPO- 34 and H-SSZ-13 for methanol-to-olefins conversion: Insights from energetic span model. Catalysis Science & Technology, 2015, 5: 4354–4364

    Article  CAS  Google Scholar 

  25. Yashima T, Ahmad H, Yamazaki K, Katsuta M, Hara N. Alkylation on synthetic zeolites: I. Alkylation of toluene with methanol. Journal of Catalysis, 1970, 16(3): 273–280

    Article  CAS  Google Scholar 

  26. Zhu Z, Chen Q, Xie Z, Yang W, Li C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Microporous and Mesoporous Materials, 2006, 88(1-3): 16–21

    Article  CAS  Google Scholar 

  27. Halgeri A B, Das J. Recent advances in selectivation of zeolites for para-disubstituted aromatics. Catalysis Today, 2002, 73(1-2): 65–73

    Article  CAS  Google Scholar 

  28. Zheng S, Jentys A, Lercher J A. Xylene isomerization with surfacemodified HZSM-5 zeolite catalysts: An in situ IR study. Journal of Catalysis, 2006, 241(2): 304–311

    Article  CAS  Google Scholar 

  29. Llopis F J, Sastre G, Corma A. Xylene isomerization and aromatic alkylation in zeolites NU-87, SSZ-33, β, and ZSM-5: Molecular dynamics and catalytic studies. Journal of Catalysis, 2004, 227(1): 227–241

    Article  CAS  Google Scholar 

  30. John H A, Kolvenbach R, Neudeck C, Al-Khattaf S S, Jentys A, Lercher J A. Tailoring mesoscopically structured H-ZSM5 zeolites for toluene Methylation. Journal of Catalysis, 2014, 311: 271–280

    Article  Google Scholar 

  31. John H A, Kolvenbach R, Al-Khattaf S S, Jentys A, Lercher J A. Enhancing shape selectivity without loss of activity—novel mesostructured ZSM5 catalysts for methylation of toluene to p-xylene. Chemical Communications, 2013, 49(10): 10584–10586

    Google Scholar 

  32. Li J, Xiang H, Liu M, Wang Q, Zhu Z, Hu Z. The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science & Technology, 2014, 4(8): 2639–2649

    Article  CAS  Google Scholar 

  33. Breen J, Burch R, Kulkarni M, Collier P, Golunski S. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time. Journal of the American Chemical Society, 2005, 127 (14): 5020–5021

    Article  CAS  Google Scholar 

  34. Tan W, Liu M, Zhao Y, Hou K K, Wu H Y, Zhang A F, Liu H O, Wang Y R, Song C S, Guo X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous and Mesoporous Materials, 2014, 196: 18–30

    Article  CAS  Google Scholar 

  35. Bi Y, Wang Y L, Wei Y X, He Y L, Yu Z X, Liu Z M, Xu L. Improved selectivity toward light olefins in the reaction of toluene with methanol over the modified HZSM-5 catalyst. ChemCatChem, 2014, 6: 713–718

    Article  CAS  Google Scholar 

  36. Zhao J C, Li G Y, Ding Y Q. Effect of antimony oxide on the acidic properties of HZSM-5. Chinese Journal of Catalysis, 1988, 9: 152–157

    CAS  Google Scholar 

  37. Zheng S, Jentys A, Lercher J A. On the enhanced para-selectivity of HZSM-5 modified by antimony oxide. Journal of Catalysis, 2003, 219: 310–319

    Article  CAS  Google Scholar 

  38. Zou W, Yang D Q, Zhu Z R, Kong D J, Chen Q L, Gao Z. Methylation of toluene with methanol over metal-oxide modified HZSM-5 catalysts. Chinese Journal of Catalysis, 2005, 26: 470–474

    CAS  Google Scholar 

  39. Suzuki K, Kiyozumi Y, Matsuzaki K. Effect of modification of ZSM-5 type zeolite with calcium phosphate on its physico-chemical and catalytic properties. Applied Catalysis, 1991, 39: 315–324

    Article  Google Scholar 

  40. Dehertog W J H, Froment G F. Production of light alkenes from methanol on ZSM-5 catalysts. Applied Catalysis, 1991, 71: 153–165

    Article  CAS  Google Scholar 

  41. Zhao G, Teng J W, Xie Z K, Jin W Q, Yang W M, Chen Q L. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. Journal of Catalysis, 2007, 248: 29–37

    Article  CAS  Google Scholar 

  42. Zhao Y, Liu J X, Xiong G, Guo H C. Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline. Chinese Journal of Catalysis, 2017, 38: 138–145

    Article  CAS  Google Scholar 

  43. Lercher J A, Rumplmayr G. Controlled decrease of acid strength by orthophosphofic acid on ZSM-5. Applied Catalysis, 1986, 25(1-2): 215–222

    Article  CAS  Google Scholar 

  44. Ghosh A K, Harvey P. Toluene Methylation Process. US Patent, 7060864, 2016

    Google Scholar 

  45. Hibino T, Niwa M, Murakami Y. Shape-selectivity over hzsm-5 modified by chemical vapor deposition of silicon alkoxide. Journal of Catalysis, 1991, 128: 551–558

    Article  CAS  Google Scholar 

  46. Tong W Y, Kong D J, Liu Z C, Guo Y L, Fang D Y. Synthesis and characterization of ZSM-5/silicalite-1 core-shell zeolite with a fluoride-containing hydrothermal system. Chinese Journal of Catalysis, 2008, 29: 1247–1252

    CAS  Google Scholar 

  47. Kim J H, Ishida A, Okajima M, Niwa M. Modification of HZSM-5 by CVD of various silicon compounds and generation of paraselectivity. Journal of Catalysis, 1996, 161: 387–392

    Article  CAS  Google Scholar 

  48. Zou W, Yang D Q, Kong D J, Xie Z K. Selective methylation of toluene with methanol over HZSM-5 zeolite modified by chemical liquid deposition. Chemical Reaction Engineering and Technology, 2006, 22: 305–309

    Google Scholar 

  49. Sayed M B, Vedrine J C. The effect of modification with boron on the catalytic activity and selectivity of HZSM-5: I. Impregnation with boric acid. Journal of Catalysis, 1986, 101: 43–55

    Article  CAS  Google Scholar 

  50. Namba S, Nakanishi S, Yashima T. Behavior of quinoline derivatives as poisons in isomerization of p-xylene on HZSM-5 zeolite. Journal of Catalysis, 1984, 88: 505–508

    Article  CAS  Google Scholar 

  51. Tan Y, Zhu R, Zhang X, Tang Y, Zeng Z. Kinetic model of toluene alkylation with methanol to produce para-xylene. Chemical Reaction Engineering and Technology, 2016, 32(2): 1–9

    Google Scholar 

  52. Chen Q L, Yang W M, Teng J W. Recent advances in coal to chemicals technology developed by SINOPEC. Chinese Journal of Catalysis, 2013, 34: 217–224

    CAS  Google Scholar 

  53. Cao J S, Zhang J M, Xu L, Liu Z M. Superiorities for developing PX production process through alkylation of toluene alcohol. Technology & Economics in Petrochemicals, 2010, 26: 8–10

    Google Scholar 

  54. Joseph C, Gentry S K, Lee H M. Innovations in para-xylene technology. European Chemical News, 2000, 10–16

    Google Scholar 

  55. Brown S H, Mathias M F, Ware R A, Olson D H. Selective paraxylene production by toluene methylation. US Patent, 6504072, 2003

    Google Scholar 

  56. Chang C D, Rodewald P G Jr. Zeolite Catalysts Having Stabilized Hydrogenation—Dehydrogenation Function. US Patent, 6541408, 2003

    Google Scholar 

  57. Hill I, Malek A, Bhan A. Kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI. ACS Catalysis, 2013, 3: 1992–2001

    Article  CAS  Google Scholar 

  58. John H A, Kolvenbach R, Al-Khattaf S S, Jentys A, Lercher J A. Methanol usage in toluene methylation with medium and large pore zeolites. ACS Catalysis, 2013, 3: 817–825

    Article  Google Scholar 

  59. Zhou J, Liu Z C, Li L, Wang Y D, Gao H X, Yang W M, Xie Z K, Tang Y. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chinese Journal of Catalysis, 2013, 34: 1429–1433

    Article  CAS  Google Scholar 

  60. John H A, Kolvenbach R, Gutierrez O Y, Al-Khattaf S S, Jentys A, Lercher J A. Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous and Mesoporous Materials, 2015, 210: 52–59

    Article  Google Scholar 

  61. Zhou J, Wang Y D, Zou W, Wang C M, Li L Y, Liu Z C, Zheng A M, Kong D J, Yang W M, Xie Z K. Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation. Industrial & Engineering Chemistry Research, 2017, 56(33): 9310–9321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to greatly acknowledge the financial support from the National Natural Science Foundation of China (NSFC, Grant No. 21403303) and Major Research Plan of NSFC (No. 91434102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiku Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, Z., Wang, Y. et al. Shape selective catalysis in methylation of toluene: Development, challenges and perspectives. Front. Chem. Sci. Eng. 12, 103–112 (2018). https://doi.org/10.1007/s11705-017-1671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1671-x

Keywords

Navigation