Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 103–112 | Cite as

Shape selective catalysis in methylation of toluene: Development, challenges and perspectives

  • Jian Zhou
  • Zhicheng Liu
  • Yangdong Wang
  • Dejin Kong
  • Zaiku Xie
Review Article


Toluene methylation with methanol offers an alternative method to produce p-xylene by gathering methyl group directly from C1 chemical sources. It supplies a “molecular engineering” process to realize directional conversion of toluene/methanol molecules by selective catalysis in complicated methylation system. In this review, we introduce the synthesis method of p-xylene, the development history of methylation catalysts and reaction mechanism, and the effect of reaction condition in para-selective technical process. If constructing p-xylene as the single target product, the major challenge to develop para-selective toluene methylation is to improve the p-xylene selectivity without, or as little as possible, losing the fraction of methanol for methylation. To reach higher yield of p-xylene and more methanol usage in methylation, zeolite catalyst design should consider improving mass transfer and afterwards covering external acid sites by surface modification to get short “micro-tunnels” with shape selectivity. A solid understanding of mass transfer will benefit realizing the aim of converting more methanol feedstock into para-methyl group.


shape selective catalysis methylation of toluene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to greatly acknowledge the financial support from the National Natural Science Foundation of China (NSFC, Grant No. 21403303) and Major Research Plan of NSFC (No. 91434102).


  1. 1.
    Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161CrossRefGoogle Scholar
  2. 2.
    Luo H, Zhao R. A review of China’s PX market in 2015 and a prospect for future. Petroleum & Petrochemical Today, 2016, 24(5): 17–19Google Scholar
  3. 3.
    Shi J, Wang Y D, Yang W M, Tang Y, Xie Z K. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes. Chemical Society Reviews, 2015, 44: 8877–8903CrossRefGoogle Scholar
  4. 4.
    Chen Q, Kong D, Yang W. Developmental trends in p-xylene production increasing technology. Petrochemical Technology, 2004, 33(10): 909–915Google Scholar
  5. 5.
    Tsai T, Liu S, Wang I. Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 1999, 181(2): 355–398CrossRefGoogle Scholar
  6. 6.
    Chen N Y, Kaeding W W, Dwyer F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts. Journal of the American Chemical Society, 1979, 101(22): 6783–6784CrossRefGoogle Scholar
  7. 7.
    Young L B, Butter S A, Kaeding W W. Shape Selective Reactions with Zeolite Catalysts: III. Selectivity in xylene isomerization, toluene-methanol alkylation, and toluene disproportionation over ZSM-5 zeolite catalysts. Journal of Catalysis, 1982, 76(2): 418–432CrossRefGoogle Scholar
  8. 8.
    Weisz P B, Frilette V J. Intracrystalline and molecular-shapeselective catalysis by zeolite salts. Journal of Physical Chemistry, 1960, 64(3): 382–382CrossRefGoogle Scholar
  9. 9.
    Kaeding W W, Chu C C, Young L B, Butter S A. Shape-selective reactions with zeolite catalysts: II. Selective disproportionation of toluene to produce benzene and p-xylene. Journal of Catalysis, 1981, 69: 392–398CrossRefGoogle Scholar
  10. 10.
    Kaeding WW, Young L B, Chu C C. Shape-selective reactions with zeolite catalysts: IV. Alkylation of toluene with ethylene to produce p-ethyltoluene. Journal of Catalysis, 1984, 89(2): 267–273CrossRefGoogle Scholar
  11. 11.
    Kaeding W W. Shape-selective reactions with zeolite catalysts: V. Alkylation or disproportionation of ethylbenzene to produce p-diethylbenzene. Journal of Catalysis, 1985, 95(2): 512–519CrossRefGoogle Scholar
  12. 12.
    Cejka J, Corma A, Zones S. Zeolites and Catalysis Synthesis, Reactions and Applications. Weinheim: Wiley-VCH, 2010, 605CrossRefGoogle Scholar
  13. 13.
    Guisnet M, Gilson J P. Zeolites for Cleaner Technologies. London: Imperial College Press, 2002, 19CrossRefGoogle Scholar
  14. 14.
    Svelle S, Visur M, Olsbye U, Saepurahman S, Bjørgen M. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: A review. Topics in Catalysis, 2011, 54(13-15): 897–906CrossRefGoogle Scholar
  15. 15.
    Vos A M, Rozanska X, Schoonheydt R A, van Santen R A, Hutschka F, Hafner J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite. Journal of the American Chemical Society, 2001, 123(12): 2799–2809CrossRefGoogle Scholar
  16. 16.
    Svelle S, Kolboe S, Olsbye U, Swang O. A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidic zeolites. Journal of Physical Chemistry B, 2003, 107 (22): 5251–5260CrossRefGoogle Scholar
  17. 17.
    Blaszkowski S R, van Santen R A. Theoretical study of the mechanism of surface methoxy and dimethyl ether formation from methanol catalyzed by zeolitic protons. Journal of Physical Chemistry B, 1997, 101(13): 2292–2305CrossRefGoogle Scholar
  18. 18.
    Boronat M, Martínez C, Corma A. Mechanistic differences between methanol and dimethylether carbonylation in side pockets and large channels of mordenite. Physical Chemistry Chemical Physics, 2011, 13: 2603–2612CrossRefGoogle Scholar
  19. 19.
    Wen Z, Yang D, Yang F, Wei Z, Zhu X. Methylation of toluene with methanol over HZSM-5: A periodic density functional theory investigation. Chinese Journal of Catalysis, 2016, 37(11): 1882–1890CrossRefGoogle Scholar
  20. 20.
    Saepurahman V M, Olsbye U, Bjørgen M, Svelle S. In situ FT-IR mechanistic investigations of the zeolite catalyzed methylation of benzene with methanol: H-ZSM-5 versus H-beta. Topics in Catalysis, 2011, 54(16-18): 1293–1301Google Scholar
  21. 21.
    Brogaard R Y, Henry R, Schuurman Y, Medford A J, Moses P G, Beato P, Svelle S, Nørskov J K, Olsbye U. Methanol-tohydrocarbons conversion: The alkene methylation pathway. Journal of Catalysis, 2014, 314: 159–169CrossRefGoogle Scholar
  22. 22.
    Li L L, Janik M J, Nie X W, Song C S, Guo X W. Reaction mechanism of toluene methylation with dimethyl carbonate or methanol catalyzed by H-ZSM-5. Acta Physico-Chimica Sinica, 2013, 29(7): 1467–1478Google Scholar
  23. 23.
    Jones J A, Iglesia E. Kinetic, spectroscopic, and theoretical assessment of associative and dissociative methanol dehydration routes in zeolites. Angewandte Chemie International Edition, 2014, 53: 12177–12181CrossRefGoogle Scholar
  24. 24.
    Wang C M, Wang Y D, Du Y J, Yang G, Xie Z K. Similarities and differences between aromatic-based and olefin-based cycles in HSAPO- 34 and H-SSZ-13 for methanol-to-olefins conversion: Insights from energetic span model. Catalysis Science & Technology, 2015, 5: 4354–4364CrossRefGoogle Scholar
  25. 25.
    Yashima T, Ahmad H, Yamazaki K, Katsuta M, Hara N. Alkylation on synthetic zeolites: I. Alkylation of toluene with methanol. Journal of Catalysis, 1970, 16(3): 273–280CrossRefGoogle Scholar
  26. 26.
    Zhu Z, Chen Q, Xie Z, Yang W, Li C. The roles of acidity and structure of zeolite for catalyzing toluene alkylation with methanol to xylene. Microporous and Mesoporous Materials, 2006, 88(1-3): 16–21CrossRefGoogle Scholar
  27. 27.
    Halgeri A B, Das J. Recent advances in selectivation of zeolites for para-disubstituted aromatics. Catalysis Today, 2002, 73(1-2): 65–73CrossRefGoogle Scholar
  28. 28.
    Zheng S, Jentys A, Lercher J A. Xylene isomerization with surfacemodified HZSM-5 zeolite catalysts: An in situ IR study. Journal of Catalysis, 2006, 241(2): 304–311CrossRefGoogle Scholar
  29. 29.
    Llopis F J, Sastre G, Corma A. Xylene isomerization and aromatic alkylation in zeolites NU-87, SSZ-33, β, and ZSM-5: Molecular dynamics and catalytic studies. Journal of Catalysis, 2004, 227(1): 227–241CrossRefGoogle Scholar
  30. 30.
    John H A, Kolvenbach R, Neudeck C, Al-Khattaf S S, Jentys A, Lercher J A. Tailoring mesoscopically structured H-ZSM5 zeolites for toluene Methylation. Journal of Catalysis, 2014, 311: 271–280CrossRefGoogle Scholar
  31. 31.
    John H A, Kolvenbach R, Al-Khattaf S S, Jentys A, Lercher J A. Enhancing shape selectivity without loss of activity—novel mesostructured ZSM5 catalysts for methylation of toluene to p-xylene. Chemical Communications, 2013, 49(10): 10584–10586Google Scholar
  32. 32.
    Li J, Xiang H, Liu M, Wang Q, Zhu Z, Hu Z. The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catalysis Science & Technology, 2014, 4(8): 2639–2649CrossRefGoogle Scholar
  33. 33.
    Breen J, Burch R, Kulkarni M, Collier P, Golunski S. Enhanced para-xylene selectivity in the toluene alkylation reaction at ultralow contact time. Journal of the American Chemical Society, 2005, 127 (14): 5020–5021CrossRefGoogle Scholar
  34. 34.
    Tan W, Liu M, Zhao Y, Hou K K, Wu H Y, Zhang A F, Liu H O, Wang Y R, Song C S, Guo X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts: Synergistic effects of surface modifications with SiO2, P2O5 and MgO. Microporous and Mesoporous Materials, 2014, 196: 18–30CrossRefGoogle Scholar
  35. 35.
    Bi Y, Wang Y L, Wei Y X, He Y L, Yu Z X, Liu Z M, Xu L. Improved selectivity toward light olefins in the reaction of toluene with methanol over the modified HZSM-5 catalyst. ChemCatChem, 2014, 6: 713–718CrossRefGoogle Scholar
  36. 36.
    Zhao J C, Li G Y, Ding Y Q. Effect of antimony oxide on the acidic properties of HZSM-5. Chinese Journal of Catalysis, 1988, 9: 152–157Google Scholar
  37. 37.
    Zheng S, Jentys A, Lercher J A. On the enhanced para-selectivity of HZSM-5 modified by antimony oxide. Journal of Catalysis, 2003, 219: 310–319CrossRefGoogle Scholar
  38. 38.
    Zou W, Yang D Q, Zhu Z R, Kong D J, Chen Q L, Gao Z. Methylation of toluene with methanol over metal-oxide modified HZSM-5 catalysts. Chinese Journal of Catalysis, 2005, 26: 470–474Google Scholar
  39. 39.
    Suzuki K, Kiyozumi Y, Matsuzaki K. Effect of modification of ZSM-5 type zeolite with calcium phosphate on its physico-chemical and catalytic properties. Applied Catalysis, 1991, 39: 315–324CrossRefGoogle Scholar
  40. 40.
    Dehertog W J H, Froment G F. Production of light alkenes from methanol on ZSM-5 catalysts. Applied Catalysis, 1991, 71: 153–165CrossRefGoogle Scholar
  41. 41.
    Zhao G, Teng J W, Xie Z K, Jin W Q, Yang W M, Chen Q L. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene. Journal of Catalysis, 2007, 248: 29–37CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Liu J X, Xiong G, Guo H C. Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline. Chinese Journal of Catalysis, 2017, 38: 138–145CrossRefGoogle Scholar
  43. 43.
    Lercher J A, Rumplmayr G. Controlled decrease of acid strength by orthophosphofic acid on ZSM-5. Applied Catalysis, 1986, 25(1-2): 215–222CrossRefGoogle Scholar
  44. 44.
    Ghosh A K, Harvey P. Toluene Methylation Process. US Patent, 7060864, 2016Google Scholar
  45. 45.
    Hibino T, Niwa M, Murakami Y. Shape-selectivity over hzsm-5 modified by chemical vapor deposition of silicon alkoxide. Journal of Catalysis, 1991, 128: 551–558CrossRefGoogle Scholar
  46. 46.
    Tong W Y, Kong D J, Liu Z C, Guo Y L, Fang D Y. Synthesis and characterization of ZSM-5/silicalite-1 core-shell zeolite with a fluoride-containing hydrothermal system. Chinese Journal of Catalysis, 2008, 29: 1247–1252Google Scholar
  47. 47.
    Kim J H, Ishida A, Okajima M, Niwa M. Modification of HZSM-5 by CVD of various silicon compounds and generation of paraselectivity. Journal of Catalysis, 1996, 161: 387–392CrossRefGoogle Scholar
  48. 48.
    Zou W, Yang D Q, Kong D J, Xie Z K. Selective methylation of toluene with methanol over HZSM-5 zeolite modified by chemical liquid deposition. Chemical Reaction Engineering and Technology, 2006, 22: 305–309Google Scholar
  49. 49.
    Sayed M B, Vedrine J C. The effect of modification with boron on the catalytic activity and selectivity of HZSM-5: I. Impregnation with boric acid. Journal of Catalysis, 1986, 101: 43–55CrossRefGoogle Scholar
  50. 50.
    Namba S, Nakanishi S, Yashima T. Behavior of quinoline derivatives as poisons in isomerization of p-xylene on HZSM-5 zeolite. Journal of Catalysis, 1984, 88: 505–508CrossRefGoogle Scholar
  51. 51.
    Tan Y, Zhu R, Zhang X, Tang Y, Zeng Z. Kinetic model of toluene alkylation with methanol to produce para-xylene. Chemical Reaction Engineering and Technology, 2016, 32(2): 1–9Google Scholar
  52. 52.
    Chen Q L, Yang W M, Teng J W. Recent advances in coal to chemicals technology developed by SINOPEC. Chinese Journal of Catalysis, 2013, 34: 217–224Google Scholar
  53. 53.
    Cao J S, Zhang J M, Xu L, Liu Z M. Superiorities for developing PX production process through alkylation of toluene alcohol. Technology & Economics in Petrochemicals, 2010, 26: 8–10Google Scholar
  54. 54.
    Joseph C, Gentry S K, Lee H M. Innovations in para-xylene technology. European Chemical News, 2000, 10–16Google Scholar
  55. 55.
    Brown S H, Mathias M F, Ware R A, Olson D H. Selective paraxylene production by toluene methylation. US Patent, 6504072, 2003Google Scholar
  56. 56.
    Chang C D, Rodewald P G Jr. Zeolite Catalysts Having Stabilized Hydrogenation—Dehydrogenation Function. US Patent, 6541408, 2003Google Scholar
  57. 57.
    Hill I, Malek A, Bhan A. Kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI. ACS Catalysis, 2013, 3: 1992–2001CrossRefGoogle Scholar
  58. 58.
    John H A, Kolvenbach R, Al-Khattaf S S, Jentys A, Lercher J A. Methanol usage in toluene methylation with medium and large pore zeolites. ACS Catalysis, 2013, 3: 817–825CrossRefGoogle Scholar
  59. 59.
    Zhou J, Liu Z C, Li L, Wang Y D, Gao H X, Yang W M, Xie Z K, Tang Y. Hierarchical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization. Chinese Journal of Catalysis, 2013, 34: 1429–1433CrossRefGoogle Scholar
  60. 60.
    John H A, Kolvenbach R, Gutierrez O Y, Al-Khattaf S S, Jentys A, Lercher J A. Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous and Mesoporous Materials, 2015, 210: 52–59CrossRefGoogle Scholar
  61. 61.
    Zhou J, Wang Y D, Zou W, Wang C M, Li L Y, Liu Z C, Zheng A M, Kong D J, Yang W M, Xie Z K. Mass transfer advantage of hierarchical zeolites promotes methanol converting into para-methyl group in toluene methylation. Industrial & Engineering Chemistry Research, 2017, 56(33): 9310–9321CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jian Zhou
    • 1
  • Zhicheng Liu
    • 1
  • Yangdong Wang
    • 1
  • Dejin Kong
    • 1
  • Zaiku Xie
    • 1
    • 2
  1. 1.Shanghai Research Institute of Petrochemical TechnologySINOPECShanghaiChina
  2. 2.SINOPECBeijingChina

Personalised recommendations