Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 174–183 | Cite as

Strengthening of polysulfone membranes using hybrid mixtures of micro- and nano-scale modifiers

  • Peyman P. Selakjani
  • Majid Peyravi
  • Mohsen Jahanshahi
  • Hamzeh Hoseinpour
  • Ali S. Rad
  • Soodabeh Khalili
Research Article
  • 21 Downloads

Abstract

Polysulfone (PSf) membranes were modified by either a new organic modifier (sulfonated poly(ether sulfide sulfone), SPESS) or a traditional modifier (rice hulk). These membranes were further reinforced with either multi-walled carbon nanotubes (MWCNTs) or silica nanoparticles. Having a dye rejection of 98.46%, the reinforced membranes increased more than 50% in strength but no change in solution flux was observed. The morphological and roughness studies were conducted using scanning electron microscopy and atomic force microscopy. Moreover, the PSF membranes were also characterized by differential scanning calorimetry. Modifying the membranes with organic modifier or nanofiller increases the glass transition temperature (T g ). The highest T g and strength were observed for the PSf-SPESSMWCNT membrane. SPESS decreases surface roughness but MWCNT increases roughness on the nanoscale. All membranes show a bimodal pore size distribution, whereas the PSf-SPESS-MWCNT membrane exhibits a relatively uniform distribution of macroscopic and microscopic pores.

Keywords

polysulfone membrane mechanical properties micro- and nano-modification binary and ternary system dye removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ng L Y, Leo C P, Mohammad AW. Optimizing the incorporation of silica nanoparticles in polysulfone/poly(vinyl alcohol) membranes with response surface methodology. Journal of Applied Polymer Science, 2011, 121(3): 1804–1814CrossRefGoogle Scholar
  2. 2.
    Zhao S, Wang Z, Wang J, Yang S, Wang S. PSf/PANI nanocomposite membrane prepared by in situ blending of PSf and PANI/NMP. Journal of Membrane Science, 2011, 376(1-2): 83–95CrossRefGoogle Scholar
  3. 3.
    Shen C, Meng Q, Zhang G. Chemical modification of polysulfone membrane by polyethylene glycol for resisting drug adsorption and self-assembly of hepatocytes. Journal of Membrane Science, 2011, 369(1-2): 474–481CrossRefGoogle Scholar
  4. 4.
    Padaki M, Isloor A M, Wanichapichart P. Polysulfone/N-phthaloylchitosan novel composite membranes for salt rejection application. Desalination, 2011, 279(1-3): 409–414CrossRefGoogle Scholar
  5. 5.
    Shi L, Wang R, Cao Y, Liang D T, Tay J H. Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 2008, 315(1-2): 195–204CrossRefGoogle Scholar
  6. 6.
    Rafiq S, Man Z, Maulud A, Muhammad N, Maitra S. Effect of varying solvents compositions on morphology and gas permeation properties on membranes blends for CO2 separation from natural gas. Journal of Membrane Science, 2011, 378(1-2): 444–452CrossRefGoogle Scholar
  7. 7.
    Barth C, Goncalves M, Pires A, Roeder J, Wolf B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299CrossRefGoogle Scholar
  8. 8.
    Ionita M, Pandele A M, Crica L, Pilan L. Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites. Part B, Engineering, 2014, 59: 133–139CrossRefGoogle Scholar
  9. 9.
    Vilakati G D, Hoek E M, Mamba B B. Probing the mechanical and thermal properties of polysulfone membranes modified with synthetic and natural polymer additives. Polymer Testing, 2014, 34: 202–210CrossRefGoogle Scholar
  10. 10.
    Bai H, Zhou Y, Zhang L. Morphology and mechanical properties of a new nanocrystalline cellulose/polysulfone composite membrane. Advances in Polymer Technology, 2015, 34(1): 21471–21478CrossRefGoogle Scholar
  11. 11.
    Peyravi M, Rahimpour A, Jahanshahi M. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. Journal of Membrane Science, 2012, 423: 225–237CrossRefGoogle Scholar
  12. 12.
    Samal S K, Dash M, Chiellini F,Wang X, Chiellini E, Declercq H A, Kaplan D L. Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Advances, 2014, 4(96): 53547–53556CrossRefGoogle Scholar
  13. 13.
    Yu K, Liu Y, Leng J. Shape memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Advances, 2014, 4(6): 2961–2968CrossRefGoogle Scholar
  14. 14.
    Misra A, Tyagi P K, Rai P, Misra D. FTIR spectroscopy of multiwalled carbon nanotubes: A simple approach to study the nitrogen doping. Journal of Nanoscience and Nanotechnology, 2007, 7(6): 1820–1823CrossRefGoogle Scholar
  15. 15.
    Lehman J H, Terrones M, Mansfield E, Hurst K E, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon, 2011, 49(8): 2581–2602CrossRefGoogle Scholar
  16. 16.
    Pouresmaeel-Selkjani P, Jahanshahi M, Peyravi M. Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Performance Polymers, 2017, 29(7): 759–771CrossRefGoogle Scholar
  17. 17.
    Mohammadi-rovshandeh J, Pouresmaeel-selakjani P, Davachi S M, Kaffashi B, Hassani A, Bahmeyi A. Effect of lignin removal on mechanical, thermal, and morphological properties of polylactide/ starch/rice husk blend used in food packaging. Journal of Applied Polymer Science, 2014, 131(22): 41095–41102CrossRefGoogle Scholar
  18. 18.
    Ding Z, Zhong L, Wang X, Zhang L. Effect of lignin-cellulose nanofibrils on the hydrophilicity and mechanical properties of polyethersulfone ultrafiltration membranes. High Performance Polymers, 2016, 28(10): 1192–1200CrossRefGoogle Scholar
  19. 19.
    Davachi S M, Bakhtiari S, Pouresmaeel-selakjani P, Mohammadirovshandeh J, Kaffashi B, Davoodi S, Yousefi A. Investigating the effect of treated rice straw in PLLA/starch composite: Mechanical, thermal, rheological, and morphological study. Advances in Polymer Technology, 2015, DOI: 10.1002/adv.21634Google Scholar
  20. 20.
    Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L. Thermomechanical and optical properties of biodegradable poly(Llactide)/ silica nanocomposites by melt compounding. Journal of Applied Polymer Science, 2009, 114(6): 3379–3388CrossRefGoogle Scholar
  21. 21.
    Liu C, Tobin R. Effects of interadsorbate interactions on surface resistivity: Oxygen on sulfur-predosed Cu (100). Journal of Chemical Physics, 2008, 128(24): 244702CrossRefGoogle Scholar
  22. 22.
    Zhang X, Gong Z, Li J, Lu T. Intermolecular sulfur ··· oxygen interactions: Theoretical and statistical investigations. Journal of Chemical Information and Modeling, 2015, 55(10): 2138–2153CrossRefGoogle Scholar
  23. 23.
    Bouajila J, Dole P, Joly C, Limare A. Some laws of a lignin plasticization. Journal of Applied Polymer Science, 2006, 102(2): 1445–1451CrossRefGoogle Scholar
  24. 24.
    Sivashinsky N, Tanny G. Ionic heterogeneities in sulfonated polysulfone films. Journal of Applied Polymer Science, 1983, 28 (10): 3235–3245CrossRefGoogle Scholar
  25. 25.
    Peinemann K V, Abetz V, Simon P F. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996CrossRefGoogle Scholar
  26. 26.
    Nonjola P T, Mathe M K, Modibedi R M. Chemical modification of polysulfone: Composite anionic exchange membrane with TiO2 nano-particles. International Journal of Hydrogen Energy, 2013, 38 (12): 5115–5121CrossRefGoogle Scholar
  27. 27.
    Shirazi Y, Ghadimi A, Mohammadi T. Recovery of alcohols from water using polydimethylsiloxane-silica nanocomposite membranes: Characterization and pervaporation performance. Journal of Applied Polymer Science, 2012, 124(4): 2871–2882CrossRefGoogle Scholar
  28. 28.
    Marchese J, Anson M, Ochoa N, Prádanos P, Palacio L, Hernández A. Morphology and structure of ABS membranes filled with two different activated carbons. Chemical Engineering Science, 2006, 61(16): 5448–5454CrossRefGoogle Scholar
  29. 29.
    Yan L, Li Y S, Xiang C B, Xianda S. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science, 2006, 276(1-2): 162–167CrossRefGoogle Scholar
  30. 30.
    Rahimpour A, Madaeni S S, Mansourpanah Y. Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science, 2010, 364(1-2): 380–388CrossRefGoogle Scholar
  31. 31.
    Barzin J, Sadatnia B. Correlation between macrovoid formation and the ternary phase diagram for polyethersulfone membranes prepared from two nearly similar solvents. Journal of Membrane Science, 2008, 325(1): 92–97CrossRefGoogle Scholar
  32. 32.
    Senthilkumar S, Rajesh S, Jayalakshmi A, Aishwarya G, Mohan D R. Preparation and performance evaluation of poly(ether-imide) incorporated polysulfone hemodialysis membranes. Journal of Polymer Research, 2012, 19(6): 1–11CrossRefGoogle Scholar
  33. 33.
    Peyravi M, Rahimpour A, Jahanshahi M. Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. Journal of Membrane Science, 2015, 473: 72–84CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Peyman P. Selakjani
    • 1
  • Majid Peyravi
    • 1
  • Mohsen Jahanshahi
    • 1
  • Hamzeh Hoseinpour
    • 2
  • Ali S. Rad
    • 3
  • Soodabeh Khalili
    • 1
  1. 1.Nanotechnology Research Institute, Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Nuclear Science and Technology Research Institute (NSTRI)TehranIran
  3. 3.Department of Chemical Engineering, Qaemshahr BranchIslamic Azad UniversityQaemshahrIran

Personalised recommendations