Advertisement

Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions

Research Article
  • 95 Downloads

Abstract

We have successfully prepared a series of Pd-Ni/TiO2 catalysts by a one-step impregnation-reduction method. Among these catalysts with different compositions of Ni and Pd, the one with the Ni:Pd ratio of 2.95 showed the best activity. Small monodispersed Pd-Ni bimetallic nanoparticles were loaded on the surface of titanium oxide nanopowder as confirmed with TEM and EDS mapping. The XPS analysis demonstrated that Pd exists as 31% Pd(II) species and 69% Pd(0) species and all nickel is Ni(II). The prepared Pd-Ni/TiO2 exhibited enhanced catalytic activity compared to an equal amount of Pd/TiO2 for Suzuki-Miyaura reactions together with excellent applicability and reusability.

Keywords

Pd-Ni bimetallic nanoparticles nanocatalysis Suzuki-Miyaura reaction titanium oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful for financial support from the National Key R&D Program of China (Grant No. 2016YFA0202900), the National Natural Science Foundation of China (Grant Nos. 21376212 and 21436010).

Supplementary material

11705_2017_1669_MOESM1_ESM.pdf (1.8 mb)
Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions

References

  1. 1.
    Crane E A, Scheidt K A. Prins-type macrocyclizations as an efficient ring-closing strategy in natural product synthesis. Angewandte Chemie International Edition, 2010, 49(45): 8316–8326CrossRefGoogle Scholar
  2. 2.
    Dumas A, Spicer C D, Gao Z, Takehana T, Lin Y A, Yasukohchi T, Davis B G. Self-liganded Suzuki-Miyaura coupling for siteselective protein PEGylation. Angewandte Chemie International Edition, 2013, 52(14): 3916–3921CrossRefGoogle Scholar
  3. 3.
    Maluenda I, Navarro O. Recent developments in the Suzuki-Miyaura reaction: 2010–2014. Molecules (Basel, Switzerland), 2015, 20(5): 7528–7557CrossRefGoogle Scholar
  4. 4.
    Miyaura N, Suzuki A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Chemical Communications, 1979, 19(19): 866–867CrossRefGoogle Scholar
  5. 5.
    Rossi R, Bellina F, Lessi M, Manzini C, Marianetti G A, Perego L. Recent applications of phosphane-based palladium catalysts in Suzuki-Miyaura reactions involved in total syntheses of natural products. Current Organic Chemistry, 2015, 19(14): 1302–1409CrossRefGoogle Scholar
  6. 6.
    Yamaguchi J, Yamaguchi A D, Itami K. C–H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angewandte Chemie International Edition, 2012, 51(36): 8960–9009CrossRefGoogle Scholar
  7. 7.
    Yokoyama A, Suzuki H, Kubota Y, Ohuchi K, Higashimura H, Yokozawa T. Chain-growth polymerization for the synthesis of polyfluorene via Suzuki-Miyaura coupling reaction from an externally added initiator unit. Journal of the American Chemical Society, 2007, 129(23): 7236–7237CrossRefGoogle Scholar
  8. 8.
    Pagliaro M, Pandarus V, Ciriminna R, Béland F, Demma Carà P. Heterogeneous versus homogeneous palladium catalysts for crosscoupling reactions. ChemCatChem, 2012, 4(4): 432–445CrossRefGoogle Scholar
  9. 9.
    Que Y, Feng C, Zhang S, Huang X. Stability and catalytic activity of PEG-b-PS-capped gold nanoparticles: A matter of PS chain length. Journal of Physical Chemistry C, 2015, 119(4): 1960–1970CrossRefGoogle Scholar
  10. 10.
    Chen J, Zhang Z, Bao Z, Su Y, Xing H, Yang Q, Ren Q. Functionalized metal-organic framework as a biomimetic heterogeneous catalyst for transfer hydrogenation of imines. ACS Applied Materials & Interfaces, 2017, 9(11): 9772–9777CrossRefGoogle Scholar
  11. 11.
    Chtchigrovsky M, Lin Y, Ouchaou K, Chaumontet M, Robitzer M, Quignard F, Taran F. Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki-Miyaura reaction. Chemistry of Materials, 2012, 24(8): 1505–1510CrossRefGoogle Scholar
  12. 12.
    Jiang B, Song S, Wang J, Xie Y, Chu W, Li H, Xu H, Tian C, Fu H. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C–C coupling reactions. Nano Research, 2014, 7(9): 1280–1290CrossRefGoogle Scholar
  13. 13.
    Sun J, Fu Y, He G, Sun X, Wang X. Green Suzuki-Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2015, 165: 661–667CrossRefGoogle Scholar
  14. 14.
    Zhang L, Feng C, Gao S, Wang Z, Wang C. Palladium nanoparticle supported on metal-organic framework derived N-decorated nanoporous carbon as an efficient catalyst for the Suzuki coupling reaction. Catalysis Communications, 2015, 61: 21–25CrossRefGoogle Scholar
  15. 15.
    Ohtaka A, Sansano J M, Nájera C, Miguel-García I, Berenguer-Murcia Á, Cazorla-Amorós D. Palladium and bimetallic palladiumnickel nanoparticles supported on multiwalled carbon nanotubes: Application to carbon-carbon bond-forming reactions in water. ChemCatChem, 2015, 7(12): 1841–1847CrossRefGoogle Scholar
  16. 16.
    Song H, Zhu Q, Zheng X, Chen X. One-step synthesis of threedimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: An efficient recyclable catalyst for Suzuki coupling reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(19): 10368–10377CrossRefGoogle Scholar
  17. 17.
    Hu J, Yang Q, Yang L, Zhang Z, Su B, Bao Z, Ren Q, Xing H, Dai S. Confining noble metal (Pd, Au, Pt) nanoparticles in surfactant ionic liquids: Active non-mercury catalysts for hydrochlorination of acetylene. ACS Catalysis, 2015, 5(11): 6724–6731CrossRefGoogle Scholar
  18. 18.
    Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y. Monodispersed Pd-Ni nanoparticles: Composition control synthesis and catalytic properties in the Miyaura-Suzuki reaction. Inorganic Chemistry, 2011, 50(6): 2046–2048CrossRefGoogle Scholar
  19. 19.
    Cai S, Wang D, Niu Z, Li Y. Progress in organic reactions catalyzed by bimetallic nanomaterials. Chinese Journal of Catalysis, 2013, 34(11): 1964–1974CrossRefGoogle Scholar
  20. 20.
    Gu J, Zhang Y W, Tao F. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Reviews, 2012, 41(24): 8050–8065CrossRefGoogle Scholar
  21. 21.
    Chen T, Rodionov V O. Controllable catalysis with nanoparticles: Bimetallic alloy systems and surface adsorbates. ACS Catalysis, 2016, 6(6): 4025–4033CrossRefGoogle Scholar
  22. 22.
    Shaabani A, Mahyari M. PdCo bimetallic nanoparticles supported on PPI-grafted graphene as an efficient catalyst for Sonogashira reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(32): 9303–9311CrossRefGoogle Scholar
  23. 23.
    Nath Dhital R, Kamonsatikul C, Somsook E, Sakurai H. Bimetallic gold-palladium alloy nanoclusters: An effective catalyst for Ullmann coupling of chloropyridines under ambient conditions. Catalysis Science & Technology, 2013, 3(11): 3030–3035CrossRefGoogle Scholar
  24. 24.
    Tan L, Wu X, Chen D, Liu H, Meng X, Tang F. Confining alloy or core-shell Au-Pd bimetallic nanocrystals in silica nanorattles for enhanced catalytic performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(35): 10382–10388CrossRefGoogle Scholar
  25. 25.
    Alonso A, Shafir A, Macanás J, Vallribera A, Muñoz M, Muraviev D N. Recyclable polymer-stabilized nanocatalysts with enhanced accessibility for reactants. Catalysis Today, 2012, 193(1): 200–206CrossRefGoogle Scholar
  26. 26.
    Han D, Bao Z, Xing H, Yang Y, Ren Q, Zhang Z. Fabrication of plasmonic Au-Pd alloy nanoparticles for photocatalytic Suzuki- Miyaura reactions under ambient conditions. Nanoscale, 2017, 9(18): 6026–6032CrossRefGoogle Scholar
  27. 27.
    Wilson D A, Wilson C J, Rosen B M, Percec V. Two-step, one-pot Ni-catalyzed neopentylglycolborylation and complementary Pd/Ni-catalyzed cross-coupling with aryl halides, mesylates, and tosylates. Organic Letters, 2008, 10(21): 4879–4882CrossRefGoogle Scholar
  28. 28.
    Son S U, Jang Y, Park J, Na H B, Park H M, Yun H J, Lee J, Hyeon T. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. Journal of the American Chemical Society, 2004, 126(16): 5026–5027CrossRefGoogle Scholar
  29. 29.
    Heshmatpour F, Abazari R, Balalaie S. Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron, 2012, 68(14): 3001–3011CrossRefGoogle Scholar
  30. 30.
    Takenaka S, Shigeta Y, Tanabe E, Otsuka K. Methane decomposition into hydrogen and carbon Nanofibers over supported Pd-Ni catalysts: Characterization of the catalysts during the reaction. Journal of Physical Chemistry B, 2004, 108(23): 7656–7664CrossRefGoogle Scholar
  31. 31.
    Feng L, Chong H, Li P, Xiang J, Fu F, Yang S, Yu H, Sheng H, Zhu M. Pd-Ni alloy nanoparticles as effective catalysts for Miyaura-Heck coupling reactions. Journal of Physical Chemistry C, 2015, 119(21): 11511–11515CrossRefGoogle Scholar
  32. 32.
    Xiang J, Li P, Chong H, Feng L, Fu F, Wang Z, Zhang S, Zhu M. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Research, 2014, 7(9): 1337–1343CrossRefGoogle Scholar
  33. 33.
    Xia J, Fu Y, He G, Sun X, Wang X. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Applied Catalysis B: Environmental, 2017, 200: 39–46CrossRefGoogle Scholar
  34. 34.
    Metin Ö, Ho S F, Alp C, Can H, Mankin MN, Gültekin MS, Chi M, Sun S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura crosscoupling reaction. Nano Research, 2013, 6(1): 10–18CrossRefGoogle Scholar
  35. 35.
    Kim MR, Choi S H. One-step synthesis of Pd-M/ZnO (M = Ag, Cu, and Ni) catalysts by irradiation and their use in hydrogenation and Suzuki reaction. Journal of Nanomaterials, 2009, 2009: e302919Google Scholar
  36. 36.
    Kim S J, Oh S D, Lee S, Choi S H. Radiolytic synthesis of Pd-M (M = Ag, Ni, and Cu)/C catalyst and their use in Suzuki-type and Hecktype reaction. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 449–456CrossRefGoogle Scholar
  37. 37.
    Han F S. Transition-metal-catalyzed Suzuki-Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts. Chemical Society Reviews, 2013, 42(12): 5270–5298CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations