Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 155–161 | Cite as

Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts

  • Songbo He
  • Jeffrey Boom
  • Rolf van der Gaast
  • K. Seshan
Research Article


In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo2C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.


bio-oil pyrolysis hydro-deoxygenation (HDO) non-noble metal catalysts hydro-treatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Miss Marta A. Machado from Universidade Federal do Rio de Janeiro, Brazil for guiding the carbide catalyst preparation.


  1. 1.
    Venderbosch R H. A critical view on catalytic pyrolysis of biomass. ChemSusChem, 2015, 8(8): 1306–1316CrossRefGoogle Scholar
  2. 2.
    Nguyen T S, Zabeti M, Lefferts L, Brem G, Seshan K. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresource Technology, 2013, 142: 353–360CrossRefGoogle Scholar
  3. 3.
    Zabeti M. Renewable Fuels via Catalytic Pyrolysis of Lignocellulose. Enschede: University of Twente Press, 2014, 18–29Google Scholar
  4. 4.
    Liu C, Wang H, Karim A, Sun J,Wang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, 2014, 43(22): 7594–7623CrossRefGoogle Scholar
  5. 5.
    Linck M, Felix L, Marker T, Roberts M. Integrated biomass hydropyrolysis and hydrotreating: A brief review. WIREs Energy and Environment, 2014, 3(6): 575–581CrossRefGoogle Scholar
  6. 6.
    Ruddy D A, Schaidle J A, Ferrell J R III,Wang J, Moens L, Hensley J E. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds. Green Chemistry, 2014, 16(2): 454–490CrossRefGoogle Scholar
  7. 7.
    Zacher A H, Olarte M V, Santosa D M, Elliott D C, Jones S B. A review and perspective of recent bio-oil hydrotreating research. Green Chemistry, 2014, 16(2): 491–515CrossRefGoogle Scholar
  8. 8.
    Oyama S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. Journal of Catalysis, 2003, 216(1-2): 343–352CrossRefGoogle Scholar
  9. 9.
    Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181(4099): 547–549CrossRefGoogle Scholar
  10. 10.
    Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today, 1992, 15(2): 179–200CrossRefGoogle Scholar
  11. 11.
    Ramanathan S, Oyama S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides. Journal of Physical Chemistry, 1995, 99(44): 16365–16372CrossRefGoogle Scholar
  12. 12.
    Szymanska-Kolasa A, Lewandowski M, Sayag C, Djéga-Mariadassou G. Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene. Catalysis Today, 2007, 119(1-4): 7–12CrossRefGoogle Scholar
  13. 13.
    Szymanska-Kolasa A, Lewandowski M, Sayag C, Brodzki D, Djéga-Mariadassou G. Comparison between tungsten carbide and molybdenum carbide for the hydrodenitrogenation of carbazole. Catalysis Today, 2007, 207(119): 35–38CrossRefGoogle Scholar
  14. 14.
    Ren H, Chen Y, Huang Y, Deng W, Vlachos D G, Chen J G. Tungsten carbides as selective deoxygenation catalysts: Experimental and computational studies of converting C3 oxygenates to propene. Green Chemistry, 2014, 16(2): 761–769CrossRefGoogle Scholar
  15. 15.
    Stellwagen D R, Bitter J H. Structure-performance relations of molybdenum-and tungsten carbide catalysts for deoxygenation. Green Chemistry, 2015, 17(1): 582–593CrossRefGoogle Scholar
  16. 16.
    Hollak S A W, Gosselink R W, Van Es D S, Bitter J H. Comparison of tungsten and molybdenum carbide catalysts for the hydrodeoxygenation of oleic acid. ACS Catalysis, 2013, 3(12): 2837–2844CrossRefGoogle Scholar
  17. 17.
    Michalsky R, Zhang Y J, Medford A J, Peterson A A. Departures from the adsorption energy scaling relations for metal carbide catalysts. Journal of Physical Chemistry C, 2014, 118(24): 13026–13034CrossRefGoogle Scholar
  18. 18.
    Xiong K, Lee W S, Bhan A, Chen J G. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran. ChemSusChem, 2014, 7(8): 2146–2149CrossRefGoogle Scholar
  19. 19.
    Xiong K, Yu W, Chen J G. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces. Applied Surface Science, 2014, 323: 88–95CrossRefGoogle Scholar
  20. 20.
    McManus J R, Vohs J M. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100). Surface Science, 2014, 630: 16–21CrossRefGoogle Scholar
  21. 21.
    Mamède A S, Giraudon J M, Löfberg A, Leclercq L, Leclercq G. Hydrogenation of toluene over ß-Mo2C in the presence of thiophene. Applied Catalysis A, General, 2002, 227(1-2): 73–82CrossRefGoogle Scholar
  22. 22.
    Nagai M, Kurakami T, Omi S. Activity of carbided molybdenaalumina for CO2 hydrogenation. Catalysis Today, 1998, 45(1-4): 235–239CrossRefGoogle Scholar
  23. 23.
    Boullosa-Eiras S, Lødeng R, Bergem H, Stöcker M, Hannevold L, Blekkan E A. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catalysis Today, 2014, 223: 44–53CrossRefGoogle Scholar
  24. 24.
    He L, Qin Y, Lou H, Chen P. High dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin. RSC Advances, 2015, 5 (54): 43141–43147CrossRefGoogle Scholar
  25. 25.
    Grilc M, Veryasov G, Likozar B, Jesih A, Levec J. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2 C and WS2 catalysts. Applied Catalysis B: Environmental, 2015, 63: 467–477CrossRefGoogle Scholar
  26. 26.
    Imran A, Bramer E A, Seshan K, Brem G. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over aluminasupported sodium carbonate. Fuel Processing Technology, 2014, 127: 72–79CrossRefGoogle Scholar
  27. 27.
    Tyrone G I, Sepúlveda C, Garcia R, García Fierro J L, Escalona N, DeSisto W J. Comparison of alumina-and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Applied Catalysis A, General, 2012, 435-436: 51–60CrossRefGoogle Scholar
  28. 28.
    Arun N, Sharma R V, Dalai A K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable & Sustainable Energy Reviews, 2015, 48: 240–255CrossRefGoogle Scholar
  29. 29.
    Zhou L, Lawal A. Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts. Catalysis Science & Technology, 2016, 6(5): 1442–1454CrossRefGoogle Scholar
  30. 30.
    Zhou L, Lawal A. Evaluation of presulfided NiMo/gamma-Al2O3 for hydrodeoxygenation of microalgae oil to produce green diesel. Energy & Fuels, 2015, 29(1): 262–272CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Songbo He
    • 1
  • Jeffrey Boom
    • 1
  • Rolf van der Gaast
    • 1
  • K. Seshan
    • 1
  1. 1.Catalytic Processes and Materials, Faculty of Science & TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations