Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 162–173 | Cite as

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

  • Muhammad I. Asghar
  • Sakari Lepikko
  • Janne Patakangas
  • Janne Halme
  • Peter D. Lund
Research Article


A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω∙cm2) followed by LSF (15.23 Ω∙cm2), LSCF (19.38 Ω∙cm2) and LSM (>300 Ω∙cm2). In addition, low frequency EIS measurements (down to 50 μHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.


electrode fuel cell low-temperature nanocomposite perovskite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is a part of EU-Indigo project. The authors especially thank Academy of Finland for their financial support (Grant Nos. 13282962 and 13279204) with the framework of EU New Indigo programme. This work made use of the premises from Aalto University Nanomicroscopy Center (Aalto-NMC), Laboratory of Inorganic Chemistry and Department of Forest Products Technology.

Supplementary material

11705_2017_1642_MOESM1_ESM.pdf (451 kb)
Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials


  1. 1.
    Rajesh S, Maccedo D A, Nascimento R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center, 2013, 485–494Google Scholar
  2. 2.
    Park S Y, Ahn J H, Jeong C W, Na C W, Song R H, Lee J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy, 2014, 39(24): 12894–12903CrossRefGoogle Scholar
  3. 3.
    Kakac S, Pramuanjaroenkij A, Zhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32(7): 761–786CrossRefGoogle Scholar
  4. 4.
    Ho T X, Kosinski P, Hoffmann A C, Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35(9): 4276–4284CrossRefGoogle Scholar
  5. 5.
    Asghar M I, Lund P D. Improving catalyst stability in nanostructured solar and fuel cells. Catalysis Today, 2015, 259: 259–265CrossRefGoogle Scholar
  6. 6.
    Yokokawa H, Tu H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412CrossRefGoogle Scholar
  7. 7.
    O’Hayre R, Cha SW, Colella W, Prinz F B. Fuel cell fundamentals. New Jersey: Wiley, 2006, 245–246Google Scholar
  8. 8.
    Patakangas J, Ma Y, Jing Y, Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263: 315–331CrossRefGoogle Scholar
  9. 9.
    Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 2006, 162(1): 30–40CrossRefGoogle Scholar
  10. 10.
    Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001, 21(10-11): 1805–1811CrossRefGoogle Scholar
  11. 11.
    Kilner J A, Burriel M. Materials for intermediate-temperature solidoxide fuel cells. Annual Review of Materials Research, 2014, 44(1): 365–393CrossRefGoogle Scholar
  12. 12.
    Fergus J, Hui R, Li X, Wilkinson D P, Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37Google Scholar
  13. 13.
    Lee J G, Park J H, Shul Y G. Tailoring gadolinium-doped ceriabased solid oxide fuel cells to achieve 2 W·cm‒2 at 550 °C. Nature Communications, 2014, 5: 4045Google Scholar
  14. 14.
    Pereira J R S, Rajesh S, Figueiredo F M L, Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta, 2013, 90: 71–79CrossRefGoogle Scholar
  15. 15.
    Rajesh S, Pereira J R S, Figueiredo F M L, Marques F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta, 2014, 125: 435–442CrossRefGoogle Scholar
  16. 16.
    Loureiro F J A, Rajesh S, Figueiredo F M L, Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances, 2014, 4: 59943–59952Google Scholar
  17. 17.
    Chockalingam R, Jain S, Basu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics, 2010, 116(1): 23–34CrossRefGoogle Scholar
  18. 18.
    Tan W, Fan L, Raza R, Khan M A, Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy, 2013, 38(1): 370–376CrossRefGoogle Scholar
  19. 19.
    Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195(15): 4695–4699CrossRefGoogle Scholar
  20. 20.
    Richter J, Holtappelsm P, Graule T, Nakamura T, Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie, 2009, 140(9): 985–999CrossRefGoogle Scholar
  21. 21.
    Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society, 1992, 139(3): 667–671CrossRefGoogle Scholar
  22. 22.
    Doyon J, Gilbert T, Davies G, Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society, 1987, 134(12): 3035–3038CrossRefGoogle Scholar
  23. 23.
    Jiang S P. A comparison of O2 reduction reactions on porous (La, Sr) MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics, 2002, 146(1-2): 1–22CrossRefGoogle Scholar
  24. 24.
    Petric A, Huang P, Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2002, 135(1-4): 719–725CrossRefGoogle Scholar
  25. 25.
    Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000CrossRefGoogle Scholar
  26. 26.
    Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212CrossRefGoogle Scholar
  27. 27.
    Wiemhofer H D, Bremes H G, Nigge U, Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics, 2002, 150(1-2): 63–77CrossRefGoogle Scholar
  28. 28.
    Seo E S M, Yoshito WK, Ussui V, Lazar D R R, Castanho S R HM, Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research, 2004, 7(1): 215–220CrossRefGoogle Scholar
  29. 29.
    Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4843CrossRefGoogle Scholar
  30. 30.
    Fu Y, Poizeau S, Bertei A, Qi C, Mohanram A, Pietras J D, Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159: 71–80CrossRefGoogle Scholar
  31. 31.
    Maguire E, Gharbage B, Margues F M B, Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics, 2000, 127(3-4): 329–335CrossRefGoogle Scholar
  32. 32.
    Evans A, Martynczuk J, Stender D, Schneider C W, Lippert T, Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-σ cathodes. Advanced Energy Materials, 2015, 5(1): 1400747CrossRefGoogle Scholar
  33. 33.
    Evans A, Karalic S, Martynczuk J, Prestat M, Tolke R, Yang Z, Gauckler L J. La0.6Sr0.4CoO3-σ thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions, 2012, 45(1): 333–336CrossRefGoogle Scholar
  34. 34.
    Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644CrossRefGoogle Scholar
  35. 35.
    Lee C. Analysis of impedance in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry, 2016, 776: 162–169CrossRefGoogle Scholar
  36. 36.
    Nguyen H V P, Kang M G, Ham H C, Choi S H, Han J, Nam S W, Hong S A, Yoon S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society, 2014, 161(14): F1458–F1467CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Muhammad I. Asghar
    • 1
  • Sakari Lepikko
    • 1
  • Janne Patakangas
    • 1
  • Janne Halme
    • 1
  • Peter D. Lund
    • 1
  1. 1.New Energy Technologies Group, Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations