Frontiers of Chemical Science and Engineering

, Volume 11, Issue 1, pp 139–142 | Cite as

Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst

Views & Comments

Abstract

Establishment of the regeneratable whole-cell catalyst platform for the production of biobased polymeric materials is a typical topic of synthetic biology. In this commentary, discovery story of a “lactate-polymerizing enzyme” (LPE) and LPE-based achievements for creating a new variety of polyesters with incorporated unnatural monomers are presented. Besides the importance of microbial platform itself is discussed referring to the “ballooning”-Escherichia coli.

Keywords

synthetic biology enzyme evolutionary engineering polyhydroxyalkanoate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemoignei M. Produits dedehydration et de polymerisation delacideßoxobutyrique. Bulletin de la Société de Chimie Biologique, 1926, 8: 770–782Google Scholar
  2. 2.
    Doi Y, Steinbühel A. Methabolic Pathways and Engineering of PHA Biosynthesis. Weinheim: Wiley-VCH Verlag GmbH, 2002, 217–247Google Scholar
  3. 3.
    Lenz R W, Marchessault R H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules, 2005, 6(1): 1–8CrossRefGoogle Scholar
  4. 4.
    Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiological Reviews, 1990, 54(4): 450–472Google Scholar
  5. 5.
    Ryner M, Stridsberg K, Albertsson A N, von Schenck H, Svensson M. Mechanism of ring-opening polymerization of 1,5-dioxepan-2-one and l-lactide with stannous 2-ethylhexanoate. A theoretical study. Macromolecules, 2001, 34(12): 3877–3881CrossRefGoogle Scholar
  6. 6.
    Rehm B H. Polyester synthases: Natural catalysts for plastics. Biochemical Journal, 2003, 376(1): 15–33CrossRefGoogle Scholar
  7. 7.
    Taguchi S, Doi Y. Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: Successful case studies of directed evolution. Macromolecular Bioscience, 2004, 4(3): 146–156CrossRefGoogle Scholar
  8. 8.
    Nomura C T, Taguchi S. PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Applied Microbiology and Biotechnology, 2006, 73(5): 969–979CrossRefGoogle Scholar
  9. 9.
    Taguchi S, Yamada M, Matsumoto K, Tajima K, Satoh Y, Munekata M, Ohno K, Kohda K, Shimamura T, Kambe H, et al. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17323–17327CrossRefGoogle Scholar
  10. 10.
    Tajima K, Satoh Y, Satoh T, Itoh R, Han X, Taguchi S, Kakuchi T, Munekata M. Chemo-enzymatic synthesis of poly(lactate-co-(3-hydroxybutyrate)) by a lactate-polymerizing enzyme. Macromolecules, 2009, 42(6): 1985–1989CrossRefGoogle Scholar
  11. 11.
    Taguchi S. Current advances in microbial cell factories for lactatebased polyesters driven by lactate-polymerizing enzymes: Toward further creation of new LA-based polyesters. Polymer Degradation & Stability, 2010, 95(8): 1421–1428CrossRefGoogle Scholar
  12. 12.
    Park S J, Kim T W, Kim M K, Lee S Y, Lim S C. Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnology Advances, 2012, 30(6): 1196–1206CrossRefGoogle Scholar
  13. 13.
    Matsumoto K, Taguchi S. Enzyme and metabolic engineering for the production of novel polymers: Crossover of biological and chemical processes. Current Opinion in Biotechnology, 2013, 24(6): 1054–1060CrossRefGoogle Scholar
  14. 14.
    Matsumoto K, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: Current challenges and unresolved questions. Applied Microbiology and Biotechnology, 2013, 97(18): 8011–8021CrossRefGoogle Scholar
  15. 15.
    Volodina E, Schürmann M, Lindenkamp N, Steinbüchel A. Characterization of propionate CoA-transferase from Ralstoniaeutropha H16. Applied Microbiology and Biotechnology, 2014, 98(8): 3579–3589CrossRefGoogle Scholar
  16. 16.
    Wittenborn E C, Jost M, Wei Y, Stubbe J A, Drennan C L. Structure of the catalytic domain of the class I polyhydroxybutyrate synthase from Cupriavidusnecator. Journal of Biological Chemistry, 2016, 291(48): 25264–25277CrossRefGoogle Scholar
  17. 17.
    Yamada M, Matsumoto K, Uramoto S, Motohashi R, Abe H, Taguchi S. Lactate fraction dependent mechanical properties of semitransparent poly(lactate-co-3-hydroxybutyrate)s produced by control of lactyl-CoA monomer fluxes in recombinant Escherichia coli. Journal of Biotechnology, 2011, 154(4): 255–260CrossRefGoogle Scholar
  18. 18.
    Utsunomia C, Matsumoto M, Taguchi S. Microbial secretion of D-lactate-based oligomers. ACS Sustainable Chemistry & Engineering, in pressGoogle Scholar
  19. 19.
    Kadoya R, Matsumoto K, Ooi T, Taguchi S. MtgA deletiontriggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One, 2015, 10(6): e0125163CrossRefGoogle Scholar
  20. 20.
    Wu H, Chen J, Chen G Q. Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Applied Microbiology and Biotechnology, 2016, 100(23): 9907–9916CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Graduate School of EngineeringHokkaido UniversityHokkaidoJapan
  2. 2.JST, CRESTTokyoJapan

Personalised recommendations