Skip to main content
Log in

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process

  • Views & Comments
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This review article reports the different steps of the design, development and validation of a process for continuous production of carbon nanotubes (CNTs) via catalytic chemical vapor deposition from the laboratory scale to the industrial production. This process is based on a continuous inclined mobile-bed rotating reactor and very active catalysts using methane or ethylene as carbon source. The importance of modeling taking into account the hydrodynamic, physicochemical and physical phenomena that occur during CNT production in the process analysis is emphasized. The impact of this invention on the environment and human health is taken into consideration too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  CAS  Google Scholar 

  2. Su D S. 20 Years of carbon nanotubes. In: Carbon Nanotubes. ChemSusChem, 2011, 4(7): 811–813 (Special Issue)

    Google Scholar 

  3. Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J M. Introduction to carbon nanotubes. In: Bhushan B, ed. Nanotechnology Handbook. 3rd edition, revised. Berlin: Springer-Verlag Heidelberg, 2010, 47–118

    Chapter  Google Scholar 

  4. Monthioux M. Introduction to carbon nanotubes (Ch1). In: Monthioux M, ed. Meta-Nanotubes: Synthesis, Properties, and Applications. London: Wiley-Blackwell, 2012, 8–39

    Google Scholar 

  5. Monthioux M, Flahaut E, Laurent C, Escoffier W, Raquet B, Bacsa W, Puech P, Machado B, Serp P. Properties of carbon nanotubes. In: Bhushan B, Luo D, Schricker S R, Sigmund W, Zauscher S, eds. Handbook of Nanomaterials Properties. Berlin: Springer-Verlag Heidelberg, 2014, 1–49

    Google Scholar 

  6. Zhang Q, Huang J Q, Zhao M Q, Qian W Z, Wei F. Carbon nanotube mass production: Principles and processes. Chem-SusChem, 2011, 4(7): 864–889

    CAS  Google Scholar 

  7. Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237–1265

    Article  CAS  PubMed  Google Scholar 

  8. Huang J Q, Zhang Q, Zhao M Q, Wei F. A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Chinese Chemical Bulletin, 2012, 57(2-3): 157–166

    Article  CAS  Google Scholar 

  9. Ruoff R S, Lorents D C. Mechanical and thermal properties of carbon nanotubes. Carbon, 1995, 33(7): 925–930

    Article  CAS  Google Scholar 

  10. Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Physical Letter Reviews, 2000, 84(20): 4613–4616

    Article  CAS  Google Scholar 

  11. Kukovecz A, Kónya Z, Nagaraju N, Willems I, Tamási A, Fonseca A, Nagy J B, Kiricsi I. Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas. Physical Chemistry Chemical Physics, 2000, 2(13): 3071–3076

    Article  CAS  Google Scholar 

  12. Willems I, Kónya Z, Colomer J F, Van Tendeloo G, Nagaraju N, Fonseca A, Nagy J B. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 2000, 317(1-2): 71–76

    Article  CAS  Google Scholar 

  13. Willems I, Kónya Z, Fonseca A, Nagy J B. Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide-supported Co-based catalysts. Applied Catalysis A, 2002, 229: 229–233

    Article  CAS  Google Scholar 

  14. Piedigrosso P, Kónya Z, Colomer J F, Fonseca A, van Tendeloo G, Nagy J B. Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts. Physical Chemistry Chemical Physics, 2000, 2(1): 163–170

    Article  CAS  Google Scholar 

  15. Pierard N, Fonseca A, Konya Z, Nagaraju N, Willems I, Tollis S, Bister G, Nagy J B, Popa P. Method for the production of functionalized short carbon nanotubes and functionalized short carbon nanotubes obtainable by said method. WO Patent, 2002/020402

    Google Scholar 

  16. Nagy J B, Nagaraju N, Willems I, Fonseca A. Catalyst supports and carbon nanotubes produced thereon. WO Patent, 2003/004410

    Google Scholar 

  17. Kathyayini H, Willems I, Fonseca A, Nagy J B, Nagaraju N. Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Communications, 2006, 7(3): 140–147

    Article  CAS  Google Scholar 

  18. Pirard J P, Bossuot C, Kreit P. Method and installation for the manufacture of carbon nanotubes. WO Patent, 2004/069742

    Google Scholar 

  19. Pirard J P. Made in Belgium. Chemical and Engineering News, 2008, 86(12): 5

    Google Scholar 

  20. Bossuot C. Development of a reactor for the manufacture of carbon nanotubes by CCVD process. Dissertation for the Doctoral Degree. Belgium: University of Liege, 2004 (in French)

    Google Scholar 

  21. Pirard S L, Douven S, Pirard J P. Development of a reactor for the manufacture of carbon nanotubes by CCVD process. Chimie Nouvelle, 2015, 119: 1–12 (in French)

    Google Scholar 

  22. See C H, Harris A T. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Industrial & Engineering Chemistry Research, 2007, 46(4): 997–1012

    Article  CAS  Google Scholar 

  23. MacKenzie K J, Dunens O M, Harris A T. An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Industrial & Engineering Chemistry Research, 2010, 49(11): 5323–5338

    Article  CAS  Google Scholar 

  24. Couteau E, Hernádi K, Seo J W, Thiên-Nga L, Mik C, Gaál R, Forr L. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chemical Physics Letters, 2003, 378(1-2): 9–17

    Article  CAS  Google Scholar 

  25. Seo JW, Couteau E, Umek P, Hernádi K, Marcoux P, Lukic B, Mik Có, Milas M, Gaál R, Forr Ló. Synthesis and manipulation of carbon nanotubes. New Journal of Physics, 2003, 5(120):1–22

    CAS  Google Scholar 

  26. Magrez A, Seo J W, Mikó C, Hernádi, K, Forró, L. Growth of carbon nanotubes with alkaline earth carbonate as support. Journal of Physical Chemistry B, 2005, 109: 10087–10091

    Article  CAS  Google Scholar 

  27. Magrez A, Seo J W, Kuznetsov V L, Forró L. Evidence of an equimolar C2H2-CO2 reaction in the synthesis of carbon nanotubes. Angewandte Chemie International Edition, 2007, 46(3): 441–444

    Article  CAS  PubMed  Google Scholar 

  28. Rakov E G, Blinov S N, Ivanov I G, Rakova E V, Digurov N G. Continuous process for obtaining carbon nanofibers. Russian Journal of Applied Chemistry, 2004, 77(2): 187–191

    Article  CAS  Google Scholar 

  29. Rakov E G. The current status of carbon nanotube and carbon nanofiber production. Nanotechnologies in Russia, 2008, 3(9-10): 575–580

    Article  Google Scholar 

  30. Zavarukhin S G, Kuvshinov G G. Mathematical modeling of continuous production of carbon nanofibers from methane in a reactor with a moving bed of a nickel-containing catalyst. Theoretical Foundations of Chemical Engineering, 2006, 40(5): 519–525

    Article  CAS  Google Scholar 

  31. Zavarukhin S G, Kuvshinov G G. Mathematical modeling of the continuous process for synthesis of nanofibrous carbon in a moving catalyst bed reactor with recirculating gas flow. Chemical Engineering Journal, 2008, 137(3): 681–685

    Article  CAS  Google Scholar 

  32. Pirard S L, Pirard J P, Bossuot C. Modeling of a continuous rotary reactor for carbon nanotube synthesis by catalytic chemical vapor deposition. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(3): 675–686

    Article  CAS  Google Scholar 

  33. Douven S, Pirard S L, Chan F Y, Pirard R, Heyen G, Pirard J P. Large scale synthesis of multi-walled carbon nanotubes in a continuous inclined rotating reactor by the catalytic chemical vapour deposition process using methane as carbon source. Chemical Engineering Journal, 2012, 188: 113–125

    Article  CAS  Google Scholar 

  34. Edwin E, Brustad M, Aaser K I, Rytter E, Mikkelsen O, Johansen J A. Carbon nano-fibre production. US Patent, 2010/0068123

    Google Scholar 

  35. Mohamed A R, Chai S P, Yeoh W M. An apparatus for production of carbon nanotubes. WO Patent, 2012/121584

    Google Scholar 

  36. Yeoh W M, Lee K T, Mohamed A R, Chai S P. Production of carbon nanotubes from chemical vapor deposition of methane in a continuous rotary reactor system. Chemical Engineering Communications, 2012, 199(5): 600–607

    Article  CAS  Google Scholar 

  37. Pinilla J L, Utrilla R, Lázaro M J, Suelves I, Moliner R, Palacios J M. A novel rotary reactor configuration for simultaneous production of hydrogen and carbon nanofibers. International Journal of Hydrogen Energy, 2009, 34(19): 8016–8022

    Article  CAS  Google Scholar 

  38. Pinilla J L, Utrilla R, Lázaro M J, Moliner R, Suelves I, García A B. Ni-and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel Processing Technology, 2011, 92(8): 1480–1488

    Article  CAS  Google Scholar 

  39. Chesnokov V V, Chichkan A S. Production of hydrogen by methane catalytic decomposition over Ni-Cu-Fe/Al2O3 catalyst. International Journal of Hydrogen Energy, 2009, 34(7): 2979–2985

    Article  CAS  Google Scholar 

  40. Torres D, Pinilla J L, Lázaro M J, Moliner R, Suelves I. Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe-Mo catalysts. International Journal of Hydrogen Energy, 2014, 39(8): 3698–3709

    Article  CAS  Google Scholar 

  41. Bayer A G. Bayer offloads its carbon nanotubes and graphene patents to future carbon. Additives for Polymers, 2014, 5: 7

    Google Scholar 

  42. Villermaux J. Reaction Chemical Engineering. 2nd ed. Paris: Lavoisier, 1993 (in French)

    Google Scholar 

  43. Pirard S L, Douven S, Bossuot C, Heyen G, Pirard J P. A kinetic study of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition using a Fe-Co/Al2O3 catalyst. Carbon, 2007, 45(6): 1167–1175

    Article  CAS  Google Scholar 

  44. Pirard S L, Heyen G, Pirard J P. Quantitative study of catalytic activity and deactivation of Fe-Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process. Applied Catalysis A, 2010, 382(1): 1–9

    Article  CAS  Google Scholar 

  45. Douven S, Pirard S L, Heyen G, Toye D, Pirard J P. Kinetic study of double-walled carbon nanotube synthesis by catalytic chemical vapour deposition over an Fe-Mo/MgO catalyst using methane as the carbon source. Chemical Engineering Journal, 2011, 175: 396–407

    Article  CAS  Google Scholar 

  46. Pirard S L, Douven S, Pirard J P. Analysis of kinetic models of multi-walled CNT synthesis. Carbon, 2007, 45(15): 3050–3052

    Article  CAS  Google Scholar 

  47. Silvy R P, Liégeois F, Culot B, Lambert S. Preparation process of a supported catalyst for producing carbon nanotubes. WO Patent, 2006/079186

    Google Scholar 

  48. Pirard S L, Delafosse A, Toye D, Pirard J P. Modeling of a continuous rotary reactor for carbon nanotubes synthesis by catalytic chemical vapor deposition: Influence of heat exchanges and temperature profiles. Chemical Engineering Journal, 2013, 232: 488–494

    Article  CAS  Google Scholar 

  49. Gommes C, Blacher S, Bossuot C, Marchot P, Nagy J B, Pirard J P. Influence of operating conditions on the production rate of multiwalled carbon nanotubes in a CVD reactor. Carbon, 2004, 42: 1473–1482

    Article  CAS  Google Scholar 

  50. Pirard S L, Lumay G, Vandewalle N, Pirard J P. Motion of carbon nanotubes in a rotating drum: Dynamic angle of repose and bed behavior diagram. Chemical Engineering Journal, 2009, 146(1): 143–147

    Article  CAS  Google Scholar 

  51. Douven S. Industrial process for the manufacture of carbon nanotubes. Dissertation for the Doctoral Degree. Belgium: University of Liege, 2010 (in French)

    Google Scholar 

  52. Tran K Y, Heinrichs B, Pirard J P, Lambert S. Carbon nanotubes synthesis by ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co and Fe-Co/Al2O3 sol-gel catalysts. Applied Catalysis A, 2007, 318: 63–69

    Article  CAS  Google Scholar 

  53. Zilli D, Blacher S, Cukierman A L, Pirard J P, Gommes C J. Formation mechanism of Y-junctions in arrays of multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 327(1-3): 140–143

    Article  CAS  Google Scholar 

  54. Gommes C, Blacher S, Masenelli-Varlot K, Bossuot C, Mc Rae E, Nagy J B, Fonseca A, Pirard J P. Image analysis characterization of multi-walled carbon nanotubes. Carbon, 2003, 41(13): 2561–2572

    Article  CAS  Google Scholar 

  55. Gommes C, Blacher S, Dupont-Pavlovsky N, Bossuot C, Lamy M, Brasseur A, Marguilier D, Fonseca A, Nagy J B, Pirard J P. Comparison of different methods for characterizing multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241: 155–164

    Article  CAS  Google Scholar 

  56. Gommes C, Noville F, Bossuot C, Pirard J P. Qualitative assessement of the purity of multi-walled carbon nanotube samples using krypton adsorption. Studies in Surface Science and Catalysis, 2007, 160: 265–271

    Article  CAS  Google Scholar 

  57. Zilli D, Bonelli P R, Gommes C J, Blacher S, Pirard J P, Cukierman A L. Krypton adsorption as a suitable tool for surface characterization of multiwalled CNTs. Carbon, 2011, 49(3): 980–985

    Article  CAS  Google Scholar 

  58. Pierard N, Fonseca A, Colomer J F, Bossuot C, Benoît J M, Van Tenderloo G, Pirard J P, Nagy J B. Ball milling effect on the structure of single-wall carbon nanotubes. Carbon, 2004, 42(8-9): 1691–1697

    Article  CAS  Google Scholar 

  59. Hwang J Y, Nish A, Doig J, Douven S, Chen C W, Chen L C, Nicholas R J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. Journal of the American Chemical Society, 2008, 130(11): 3543–3553

    Article  CAS  PubMed  Google Scholar 

  60. Haghgoo M, Yousefi A A, Zohouriaan Mehr M J, Léonard A F, Philippe M P, Compère P, Léonard A, Job N. Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol-formaldehyde xerogel composites. Journal of Materials Science, 2015, 50(18): 6007–6020

    Article  CAS  Google Scholar 

  61. Aqil A, Vlad A, Piedboeuf M L, Aqil M, Job N, Melinte S, Detrembleur C, Jérôme C. A new design of organic radical batteries (ORBs): Carbon nanotube buckypaper electrode functionalized by electrografting. Chemical Communications, 2015, 51(45): 9301–9304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.P. Pirard offers thanks to the Belgian Walloon Region for research projects SYNATEC (n 14622), CATSYNAC (n 616517), PINSYNAC (n 516113), NANOCOMPO and RESSYNAC, and the European Union for the Research Training Network NANOCOMP (RTN1- 1999-00013). The authors also acknowledge Nanocyl SA for permitting the publication of their research works (www.nanocyl.com). S.L. Pirard is grateful to the Belgian F.R.S.–FNRS for postdoctoral researcher funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie L. Pirard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirard, S.L., Douven, S. & Pirard, JP. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front. Chem. Sci. Eng. 11, 280–289 (2017). https://doi.org/10.1007/s11705-017-1635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1635-1

Keywords

Navigation