Skip to main content
Log in

Genetic biosensors for small-molecule products: Design and applications in high-throughput screening

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schallmey M, Frunzke J, Eggeling L, Marienhagen J. Looking for the pick of the bunch: High-throughput screening of producing microorganisms with biosensors. Current Opinion in Biotechnology, 2014, 26: 148–154

    Article  CAS  PubMed  Google Scholar 

  2. Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940–943

    Article  CAS  PubMed  Google Scholar 

  3. Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796–802

    Article  CAS  PubMed  Google Scholar 

  4. Choi Y J, Lee S Y. Microbial production of short-chain alkanes. Nature, 2013, 502(7472): 571–574

    Article  CAS  PubMed  Google Scholar 

  5. Dellomonaco C, Clomburg J M, Miller E N, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355–359

    Article  CAS  PubMed  Google Scholar 

  6. Enquist-Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hanel A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2013, 505(7482): 239–243

    Article  CAS  PubMed  Google Scholar 

  7. Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metabolic Engineering, 2011, 13(2): 159–168

    Article  CAS  PubMed  Google Scholar 

  8. Lee K H, Park J H, Kim T Y, Kim H U, Lee S Y. Systems metabolic engineering of Escherichia coli for l-threonine production. Molecular Systems Biology, 2007, 3(1): 149

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25: 113–123

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, del Cardayre S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646

    Article  CAS  PubMed  Google Scholar 

  11. Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cobb R E, Chao R, Zhao H M. Directed evolution: Past, present, and future. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(5): 1432–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopeneoverproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5): 612–616

    Article  CAS  PubMed  Google Scholar 

  14. Jantama K, Haupt M J, Svoronos S A, Zhang X L, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140–1153

    Article  CAS  PubMed  Google Scholar 

  15. Dietrich J A, McKee A E, Keasling J D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 2010, 79(1): 563–590

    Article  CAS  PubMed  Google Scholar 

  16. Kim Y, Ingram L O, Shanmugam K T. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 2007, 73(6): 1766–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou S, Iverson A G, Grayburn W S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnology Letters, 2008, 30(2): 335–342

    Article  CAS  PubMed  Google Scholar 

  18. Solem C, Dehli T, Jensen P R. Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013, 79(8): 2512–2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic l-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim J H, Seo S W, Kim S Y, Jung G Y. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20: 49–55

    Article  CAS  Google Scholar 

  21. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7(7): 445–452

    Article  CAS  PubMed  Google Scholar 

  22. Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97(11): 4811–4819

    Article  CAS  PubMed  Google Scholar 

  23. Zhang X, Jantama K, Moore J C, Shanmugam K T, Ingram L O. Production of l-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355–366

    Article  CAS  PubMed  Google Scholar 

  24. Jantama K, Zhang X, Moore J C, Shanmugam K T, Svoronos S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881–893

    Article  CAS  PubMed  Google Scholar 

  25. Klein-Marcuschamer D, Ajikumar P K, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 2007, 25(9): 417–424

    Article  CAS  PubMed  Google Scholar 

  26. Santos C N S, Stephanopoulos G. Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197

    Article  CAS  PubMed  Google Scholar 

  27. DeLoache W C, Russ Z N, Narcross L, Gonzales A M, Martin V J, Dueber J E. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465–471

    Article  CAS  PubMed  Google Scholar 

  28. Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): 1

    Article  CAS  Google Scholar 

  29. Lin H, Tao H, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. Journal of the American Chemical Society, 2004, 126(46): 15051–15059

    Article  CAS  PubMed  Google Scholar 

  30. Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish V W. Chemical complementation: A reactionindependent genetic assay for enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16537–16542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frommer WB, Davidson M W, Campbell R E. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lalonde S, Ehrhardt D W, Frommer WB. Shining light on signaling and metabolic networks by genetically encoded biosensors. Current Opinion in Plant Biology, 2005, 8(6): 574–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Okumoto S, Looger L L, Micheva K D, Reimer R J, Smith S J, Frommer W B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8740–8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Lorimier R M, Smith J J, Dwyer M A, Looger L L, Sali K M, Paavola C D, Rizk S S, Sadigov S, Conrad D W, Loew L, et al. Construction of a fluorescent biosensor family. Protein Science, 2002, 11(11): 2655–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fehr M, Lalonde S, Lager I, Wolff M W, Frommer W B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. Journal of Biological Chemistry, 2003, 278(21): 19127–19133

    Article  CAS  PubMed  Google Scholar 

  36. Fehr M, Takanaga H, Ehrhardt D W, Frommer W B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Molecular and Cellular Biology, 2005, 25(24): 11102–11112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaper T, Lager I, Looger L L, Chermak D, Frommer W B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnology for Biofuels, 2008, 1(1): 1

    Article  CAS  Google Scholar 

  38. Fehr M, Frommer W B, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9846–9851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deuschle K, Okumoto S, Fehr M, Looger L L, Kozhukh L, Frommer W B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Science, 2005, 14(9): 2304–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRETbased nanosensor. Protein Science, 2009, 18(12): 2518–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metaboliteproducing microbes. Nature Communications, 2013, 4: 7

    Google Scholar 

  43. Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41(4): 2541–2551

    Article  CAS  PubMed  Google Scholar 

  44. Trausch J J, Ceres P, Reyes F E, Batey R T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure (London, England), 2011, 19(10): 1413–1423

    Article  CAS  Google Scholar 

  45. Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. Journal of the American Chemical Society, 2004, 126(41): 13247–13254

    Article  CAS  PubMed  Google Scholar 

  46. Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Michener J K, Smolke C D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metabolic Engineering, 2012, 14(4): 306–316

    Article  CAS  PubMed  Google Scholar 

  48. Eckdahl T T, Campbell A M, Heyer L J, Poet J L, Blauch D N, Snyder N L, Atchley D T, Baker E J, Brown M, Brunner E C, et al. Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS One, 2015, 10(2): 0118322

    Article  CAS  Google Scholar 

  49. Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822

    Article  CAS  PubMed  Google Scholar 

  50. Win MN, Smolke C D. A modular and extensible RNA-based generegulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283–14288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ouellet J. RNA Fluorescence with light-up aptamers. Frontiers in Chemistry, 2016, 4: 29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakayama S, Luo Y, Zhou J, Dayie T K, Sintim H O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chemical Communications, 2012, 48(72): 9059–9061

    Article  CAS  PubMed  Google Scholar 

  53. Wang X C, Wilson S C, Hammond M C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research, 2016, 44(17): e139–e139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kellenberger C A, Hammond M C. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods in Enzymology, 2015, 550: 147–172

    Article  CAS  PubMed  Google Scholar 

  55. Paige J S, Nguyen-Duc T, Song W, Jaffrey S R. Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335(6073): 1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Su Y, Hickey S F, Keyser S G, Hammond M C. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-l-homocysteine (SAH). Journal of the American Chemical Society, 2016, 138(22): 7040–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kellenberger C A, Chen C, Whiteley A T, Portnoy D A, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20): 6432–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Research, 2013, 41(12): 6360–6369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21–29

    Article  CAS  PubMed  Google Scholar 

  60. Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch V F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158(4): 231–241

    Article  CAS  PubMed  Google Scholar 

  61. Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metabolic Engineering, 2012, 14(4): 449–457

    Article  CAS  PubMed  Google Scholar 

  62. Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194

    Article  CAS  PubMed  Google Scholar 

  63. Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One, 2014, 9(1): e85731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bogner M, Ludewig U. Visualization of arginine influx into plant cells using a specific FRET-sensor. Journal of Fluorescence, 2007, 17(4): 350–360

    Article  CAS  PubMed  Google Scholar 

  65. Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors & Bioelectronics, 2014, 59: 358–364

    Article  CAS  Google Scholar 

  66. Mohsin M, Abdin M Z, Nischal L, Kardam H, Ahmad A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosensors & Bioelectronics, 2013, 50: 72–77

    Article  CAS  Google Scholar 

  67. Wang J M, Gao D F, Yu X L, Li W, Qi Q S. Evolution of a chimeric aspartate kinase for l-lysine production using a synthetic RNA device. Applied Microbiology and Biotechnology, 2015, 99(20): 8527–8536

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, et al. Developing a highthroughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 1

    Article  CAS  Google Scholar 

  69. Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M G, Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3(8): 623–628

    Article  CAS  PubMed  Google Scholar 

  70. Mahr R, von Boeselager R F, Wiechert J, Frunzke J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Applied Microbiology and Biotechnology, 2016, 100(15):6739–6753

    Google Scholar 

  71. Dietrich J A, Shis D L, Alikhani A, Keasling J D. Transcription factor-based screens and synthetic selections for microbial smallmolecule biosynthesis. ACS Synthetic Biology, 2013, 2(1): 47–58

    Article  CAS  PubMed  Google Scholar 

  72. Szmidt-Middleton H L, Ouellet M, Adams P D, Keasling J D, Mukhopadhyay A. Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103: 68–73

    Article  CAS  Google Scholar 

  73. Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 2010, 76(21): 7029–7035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. van Sint Fiet S, van Beilen J B, Witholt B. Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1693–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Raman S, Rogers J K, Taylor N D, Church G M. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17803–17808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen W, Zhang S, Jiang P X, Yao J, He Y Z, Chen L C, Gui X W, Dong Z Y, Tang S Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 2015, 30: 149–155

    Article  CAS  PubMed  Google Scholar 

  77. Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synthetic Biology, 2015, 4(12): 1261–1269

    Article  CAS  PubMed  Google Scholar 

  78. Tang S Y, Cirino P C. Design and application of a mevalonateresponsive regulatory protein. Angewandte Chemie International Edition, 2011, 50(5): 1084–1086

    Article  CAS  PubMed  Google Scholar 

  79. Tang S Y, Qian S, Akinterinwa O, Frei C S, Gredell J A, Cirino P C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013, 135(27): 10099–10103

    Article  CAS  PubMed  Google Scholar 

  80. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465–2483

    Article  CAS  PubMed  Google Scholar 

  81. Siedler S, Stahlhut S G, Malla S, Maury J, Neves A R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 2014, 21: 2–8

    Article  CAS  PubMed  Google Scholar 

  82. Marin A M, Souza E M, Pedrosa F O, Souza L M, Sassaki G L, Baura V A, Yates M G, Wassem R, Monteiro R A. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology, 2013, 159(1): 167–175

    Article  CAS  PubMed  Google Scholar 

  83. Teran W, Felipe A, Segura A, Rojas A, Ramos J L, Gallegos M T. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3067–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429

    Article  CAS  PubMed  Google Scholar 

  85. Thompson K M, Syrett H A, Knudsen S M, Ellington A D. Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2(1): 1

    Article  Google Scholar 

  86. Chou H H, Keasling J D. Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4: 8

    Article  CAS  Google Scholar 

  87. Park Y H, Koo H M, Moon J O, Kim S J, Kim H J, Lee J K. LLysine-inducible promoter. US 07851198, Dec 14 2010, 2010

    Google Scholar 

  88. Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y. Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. Journal of Industrial Microbiology & Biotechnology, 2016, 43(9): 1227–1235

    Article  CAS  Google Scholar 

  89. Kim Y S, Gu M B. Advances in aptamer screening and small molecule aptasensors. Biosensors Based on Aptamers and Enzymes, 2014, 140: 29–67

    Article  CAS  Google Scholar 

  90. Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in Chemistry, 2016, 4: 14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. McKeague M, Derosa M C. Challenges and opportunities for small molecule aptamer development. Journal of Nucleic Acids, 2012, 2012: 748913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang-Yan Tang or Sheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Tang, SY. & Yang, S. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening. Front. Chem. Sci. Eng. 11, 15–26 (2017). https://doi.org/10.1007/s11705-017-1629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1629-z

Keywords

Navigation