Skip to main content
Log in

Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A microsphere biosorbent with uniform size (CV = 1.52%), controllable morphology and component, and high mechanical strength was synthesized from chitosan by microfluidic technology combining with chemical crosslinking and solvent extraction. This chitosan microsphere (CS-MS) was prepared with a two-step solidification process, which was acquired by drying for the enhancement of mechanical property in final. The adsorption behavior of CS-MS towards copper (II) and main influencing factors on adsorption performance were investigated by batch experiments. Kinetic data hig-hlighted dominant chemical bonding along with electrons transferring in adsorption process. Isothermal analysis indicated that adsorption capacity was relevant to the number of active site. All these explorations provided a new direction for preparing highly comprehensive performance sorbent used in heavy metal treatment via microfluidic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sikder M T, Mihara Y, Islam M S, Saito T, Tanaka S, Kurasaki M. Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chemical Engineering Journal, 2014, 236: 378–387

    Article  CAS  Google Scholar 

  2. He J S, Chen J P. Cu(II)-imprinted poly(vinyl alcohol)/poly(acrylic acid) membrane for greater enhancement in sequestration of copper ion in the presence of competitive heavy metal ions: Material development, process demonstration, and study of mechanisms. Industrial & Engineering Chemistry Research, 2014, 53(52): 20223–20233

    Article  CAS  Google Scholar 

  3. Sdiri A, Bouaziz S. Re-evaluation of several heavy metals removal by natural limestones. Frontiers of Chemical Science and Engineering, 2014, 8(4): 418–432

    Article  CAS  Google Scholar 

  4. Sciban M, Radetic B, Kevresan D, Klasnja M. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresource Technology, 2007, 98(2): 402–409

    Article  CAS  Google Scholar 

  5. Srivastava N K, Majumder C B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. Journal of Hazardous Materials, 2008, 151(1): 1–8

    Article  CAS  Google Scholar 

  6. Shafaei A, Rezayee M, Arami M, Nikazar M. Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination, 2010, 260(1-3): 23–28

    Article  CAS  Google Scholar 

  7. Sangvanich T, Sukwarotwat V, Wiacek R J, Grudzien R M, Fryxell G E, Addleman R S, Timchalk C, Yantasee W. Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica. Journal of Hazardous Materials, 2010, 182(1-3): 225–231

    Article  CAS  Google Scholar 

  8. Tran M, Wang C. Semi-solid materials for controlled release drug formulation: Current status and future prospects. Frontiers of Chemical Science and Engineering, 2014, 8(2): 225–232

    Article  CAS  Google Scholar 

  9. Witoon T, Mungcharoen T, Limtrakul J. Biotemplated synthesis of highly stable calcium-based sorbents for CO2 capture via a precipitation method. Applied Energy, 2014, 118: 32–40

    Article  CAS  Google Scholar 

  10. Vold I M N, Varum K M, Guibal E, Smidsrod O. Binding of ions to chitosan-selectivity studies. Carbohydrate Polymers, 2003, 54(4): 471–477

    Article  CAS  Google Scholar 

  11. Gamage A, Shahidi F. Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 2007, 104 (3): 989–996

    Article  CAS  Google Scholar 

  12. Pillai C K S, Paul W, Sharma C P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 2009, 34(7): 641–678

    Article  CAS  Google Scholar 

  13. Ma J, Liu C H, Li R, Wang J. Properties and structural characterization of chitosan/graphene oxide biocomposites. Bio- Medical Materials and Engineering, 2012, 22(1-3): 129–135

    CAS  PubMed  Google Scholar 

  14. Yeng C M, Husseinsyah S, Ting S S. A comparative study of different crosslinking agent-modified chitosan/corn cob biocomposite films. Polymer Bulletin, 2015, 72(4): 791–808

    Article  CAS  Google Scholar 

  15. Vasconcelos H L, Camargo T P, Gonçalves N S, Neves A, Laranjeira M C M, Fávere V T. Chitosan crosslinked with a metal complexing agent: Synthesis, characterization and copper(II) ions adsorption. Reactive & Functional Polymers, 2008, 68(2): 572–579

    Article  CAS  Google Scholar 

  16. Li M X, Cheng S L, Yan H S. Preparation of crosslinked chitosan/poly(vinyl alcohol) blend beads with high mechanical strength. Green Chemistry, 2007, 9(8): 894–898

    Article  CAS  Google Scholar 

  17. Zhou D, Zhang L, Guo S L. Mechanisms of lead biosorption on cellulose/chitin beads. Water Research, 2005, 39(16): 3755–3762

    Article  CAS  Google Scholar 

  18. Arvand M, Pakseresht M A. Cadmium adsorption on modified chitosan-coated bentonite: Batch experimental studies. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2013, 88(4): 572–578

    Article  CAS  Google Scholar 

  19. Merrifield J D, Davids W G, MacRae J D, Amirbahman A. Uptake of mercury by thiol-grafted chitosan gel beads. Water Research, 2004, 38(13): 3132–3138

    Article  CAS  Google Scholar 

  20. Zhao F, Yu B, Yue Z, Wang T, Wen X, Liu Z, Zhao C. Preparation of porous chitosan gel beads for copper(II) ion adsorption. Journal of Hazardous Materials, 2007, 147(1-2): 67–73

    Article  CAS  Google Scholar 

  21. Filipovic-Grcic J, Perissutti B, Moneghini M, Voinovich D, Martinac A, Jalsenjak I. Spray-dried carbamazepine-loaded chitosan and HPMC microspheres: Preparation and characterisation. Journal of Pharmacy and Pharmacology, 2003, 55(7): 921–931

    Article  CAS  Google Scholar 

  22. Peng H, Xiong H, Li J, Xie M, Liu Y, Bai C, Chen L. Vanillin crosslinked chitosan microspheres for controlled release of resveratrol. Food Chemistry, 2010, 121(1): 23–28

    Article  CAS  Google Scholar 

  23. Kim J H, Jeon T Y, Choi T M, Shim T S, Kim S H, Yang S M. Droplet microfluidics for producing functional microparticles. Langmuir, 2014, 30(6): 1473–1488

    Article  CAS  Google Scholar 

  24. Yang C H, Huang K S, Lin P W, Lin Y C. Using a cross-flow microfluidic chip and external crosslinking reaction for monodisperse TPP-chitosan microparticles. Sensors and Actuators. B, Chemical, 2007, 124(2): 510–516

    CAS  Google Scholar 

  25. Xu J H, Li S W, Tostado C, Lan W J, Luo G S. Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device. Biomedical Microdevices, 2009, 11(1): 243–249

    Article  CAS  Google Scholar 

  26. Lu Y, He J, Luo G. An improved synthesis of chitosan bead for Pb (II) adsorption. Chemical Engineering Journal, 2013, 226: 271–278

    Article  CAS  Google Scholar 

  27. Duran A, Soylak M, Tuncel S A. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. Journal of Hazardous Materials, 2008, 155 (1-2): 114–120

    Article  CAS  Google Scholar 

  28. Ozay O, Ekici S, Baran Y, Kubilay S, Aktas N, Sahiner N. Utilization of magnetic hydrogels in the separation of toxic metal ions from aqueous environments. Desalination, 2010, 260(1-3): 57–64

    Article  CAS  Google Scholar 

  29. Nguema P F, Luo Z J, Lian J J. The biosorption of Cr(VI) ions by dried biomass obtained from a chromium-resistant bacterium. Frontiers of Chemical Science and Engineering, 2014, 8(4): 454–464

    Article  CAS  Google Scholar 

  30. Guibal E, Milot C, Eterradossi O, Gauffier C, Domard A. Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. International Journal of Biological Macromolecules, 1999, 24(1): 49–59

    Article  CAS  Google Scholar 

  31. Wang Z K, Hu Q L, Wang Y X. Preparation of chitosan rods with excellent mechanical properties: One candidate for bone fracture internal fixation. Science China. Chemistry, 2011, 54(2): 380–384

    Article  CAS  Google Scholar 

  32. Zhang J, Du Z, Xu S, Zhang S. Synthesis and characterization of Karaya gum/chitosan composite microspheres. Iranian Polymer Journal, 2009, 18(4): 307–313

    CAS  Google Scholar 

  33. Nisisako T, Torii T, Higuchi T. Novel microreactors for functional polymer beads. Chemical Engineering Journal, 2004, 101(1): 23–29

    Article  CAS  Google Scholar 

  34. Omi S, Senba T, Nagai M, Ma G H. Morphology development of 10-μm scale polymer particles prepared by SPG emulsification and suspension polymerization. Journal of Applied Polymer Science, 2001, 79(12): 2200–2220

    Article  CAS  Google Scholar 

  35. Shah J, Jan M R, Haq A, Khan Y. Removal of rhodamine B from aqueous solutions and wastewater by walnut shells: Kinetics, equilibrium and thermodynamics studies. Frontiers of Chemical Science and Engineering, 2013, 7(4): 428–436

    Article  CAS  Google Scholar 

  36. Chung H K, Kim W H, Park J, Cho J, Jeong T Y, Park P K. Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 28: 241–246

    Article  CAS  Google Scholar 

  37. Zhang M M, Wang R Q, Guo W, Xue T, Dai J L. Mercury (II) adsorption on three contrasting Chinese soils treated with two sources of dissolved organic matter: I. Langmuir and Freundlich isotherm evaluation. Soil & Sediment Contamination, 2014, 23(1): 49–62

    Article  Google Scholar 

  38. Jeppu G P, Clement T P. A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. Journal of Contaminant Hydrology, 2012, 129–130: 46–53

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support by the National Basic Research Program of China (2014CB748500) and the National Natural Science Foundation of China (Grant Nos. 51578239 and 51322805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhishan Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Bai, Z., Wang, B. et al. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II). Front. Chem. Sci. Eng. 11, 238–251 (2017). https://doi.org/10.1007/s11705-017-1627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1627-1

Keywords

Navigation