Frontiers of Chemical Science and Engineering

, Volume 11, Issue 1, pp 107–116 | Cite as

Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae

  • Ting Yuan
  • Yakun Guo
  • Junkai Dong
  • Tianyi Li
  • Tong Zhou
  • Kaiwen Sun
  • Mei Zhang
  • Qingyu Wu
  • Zhen Xie
  • Yizhi Cai
  • Limin Cao
  • Junbiao Dai
Research Article

Abstract

Promoters are critical elements to control gene expression but could behave differently under various growth conditions. Here we report the construction of a genome-wide promoter library, in which each native promoter in Saccharomyces cerevisiae was cloned upstream of a yellow fluorescent protein (YFP) reporter gene. Nine libraries were arbitrarily defined and assembled in bacteria. The resulting pools of promoters could be prepared and transformed into a yeast strain either as centromeric plasmids or integrated into a genomic locus upon enzymatic treatment. Using fluorescence activated cell sorting, we classified the yeast strains based on YFP fluorescence intensity and arbitrarily divided the entire library into 12 bins, representing weak to strong promoters. Several strong promoters were identified from the most active bins and their activities were assayed under different growth conditions. Finally, these promoters were applied to drive the expression of genes in xylose utilization to improve fermentation efficiency. Together, this library could provide a quick solution to identify and utilize desired promoters under user-defined growth conditions.

Keywords

synthetic biology yeast promoter activity metabolic engineering xylose utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Jianhuo Fang at DNA sequencing facility in Tsinghua University for providing the sequencing service. This work was supported by the National Natural Science Foundation of China (Grant No. 31471254), Chinese Ministry of Science and Technology grant 2012CB725201 and Tsinghua University Initiative grant 20161080088.

References

  1. 1.
    Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expressionlevel optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678CrossRefGoogle Scholar
  2. 2.
    Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, McPhee D, Leavell M D, Tai A, Main A, Eng D, et al. High-level semisynthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528–532CrossRefGoogle Scholar
  3. 3.
    Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249CrossRefGoogle Scholar
  4. 4.
    Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A III, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345CrossRefGoogle Scholar
  5. 5.
    Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11): e3647CrossRefGoogle Scholar
  6. 6.
    Casini A, MacDonald J T, De Jonghe J, Christodoulou G, Freemont P S, Baldwin G S, Ellis T. One-pot DNA construction for synthetic biology: The modular overlap-directed assembly with linkers (MODAL) strategy. Nucleic Acids Research, 2014, 42(1): e7CrossRefGoogle Scholar
  7. 7.
    Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, Wang L, Shen Y, Luo Y, Zheng Y, et al. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Research, 2015, 43(13): e88CrossRefGoogle Scholar
  8. 8.
    Lam F H, Ghaderi A, Fink G R, Stephanopoulos G. Biofuels. Engineering alcohol tolerance in yeast. Science, 2014, 346(6205): 71–75Google Scholar
  9. 9.
    Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnology, 2013, 13(1): 110–118CrossRefGoogle Scholar
  10. 10.
    Caspeta L, Castillo T, Nielsen J. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Frontiers in Bioengineering and Biotechnology, 2015, 3: 184–198CrossRefGoogle Scholar
  11. 11.
    Demeke M M, Dietz H, Li Y, Foulquie-Moreno M R, Mutturi S, Deprez S, Den Abt T, Bonini B M, Liden G, Dumortier F, et al. Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 2013, 6(1): 89–112CrossRefGoogle Scholar
  12. 12.
    Zhang M M, Zhao X Q, Cheng C, Bai F W. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnology Journal, 2015, 10(12): 1903–1911CrossRefGoogle Scholar
  13. 13.
    Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metabolic Engineering, 2014, 24: 150–159CrossRefGoogle Scholar
  14. 14.
    Smolke C D. Building outside of the box: iGEM and the biobricks foundation. Nature Biotechnology, 2009, 27(12): 1099–1102CrossRefGoogle Scholar
  15. 15.
    Zucca S, Pasotti L, Politi N, Cusella De Angelis M G, Magni P. A standard vector for the chromosomal integration and characterization of biobrick parts in Escherichia coli. Journal of Biological Engineering, 2013, 7(1): 12–24CrossRefGoogle Scholar
  16. 16.
    Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z, Weinberger A, Segal E. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotechnology, 2012, 30(6): 521–530CrossRefGoogle Scholar
  17. 17.
    Solis-Escalante D, Kuijpers N G, van der Linden F H, Pronk J T, Daran J M, Daran-Lapujade P. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced doublestrand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Research, 2014, 14(5): 741–754CrossRefGoogle Scholar
  18. 18.
    Plessis A, Perrin A, Haber J E, Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics, 1992, 130(3): 451–460Google Scholar
  19. 19.
    Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678–12683CrossRefGoogle Scholar
  20. 20.
    Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, et al. Promoters maintain their relative activity levels under different growth conditions. Molecular Systems Biology, 2013, 9(1): 701–717CrossRefGoogle Scholar
  21. 21.
    Ho N W, Chen Z, Brainard A P, Sedlak M. Successful design and development of genetically engineered saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Advances in Biochemical Engineering/ Biotechnology, 1999, 65: 163–192CrossRefGoogle Scholar
  22. 22.
    Ha S J, Galazka J M, Kim S R, Choi J H, Yang X, Seo J H, Glass N L, Cate J H, Jin Y S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 504–509CrossRefGoogle Scholar
  23. 23.
    Wei N, Oh E J, Million G, Cate J H, Jin Y S. Simultaneous utilization of cellobiose, xylose, and Acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synthetic Biology, 2015, 4(6): 707–713CrossRefGoogle Scholar
  24. 24.
    Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678–12683CrossRefGoogle Scholar
  25. 25.
    Curran K A, Crook N C, Karim A S, Gupta A, Wagman A M, Alper H S. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nature Communications, 2014, 5: 4002–4021CrossRefGoogle Scholar
  26. 26.
    Redden H, Alper H S. The development and characterization of synthetic minimal yeast promoters. Nature Communications, 2015, 6: 7810–7818CrossRefGoogle Scholar
  27. 27.
    Rajkumar A S, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen M K, Keasling J D. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44(17): e136CrossRefGoogle Scholar
  28. 28.
    Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler A A, van Dijken J P, Pronk J T. Metabolic engineering of a xyloseisomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 2005, 5(4-5): 399–409CrossRefGoogle Scholar
  29. 29.
    van Maris A J, Winkler A A, Kuyper M, de Laat W T, van Dijken J P, Pronk J T. Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Advances in Biochemical Engineering/Biotechnology, 2007, 108: 179–204CrossRefGoogle Scholar
  30. 30.
    Zhou H, Cheng J S, Wang B L, Fink G R, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14(6): 611–622CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ting Yuan
    • 1
  • Yakun Guo
    • 1
  • Junkai Dong
    • 1
  • Tianyi Li
    • 1
  • Tong Zhou
    • 1
  • Kaiwen Sun
    • 1
  • Mei Zhang
    • 2
  • Qingyu Wu
    • 1
  • Zhen Xie
    • 3
  • Yizhi Cai
    • 4
  • Limin Cao
    • 2
  • Junbiao Dai
    • 1
  1. 1.MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.College of Life SciencesCapital Normal UniversityBeijingChina
  3. 3.MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST/Department of AutomationTsinghua UniversityBeijingChina
  4. 4.School of Biological Sciences, The King’s BuildingsUniversity of EdinburghEdinburghUK

Personalised recommendations