Skip to main content
Log in

Genome reprogramming for synthetic biology

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The ability to go from a digitized DNA sequence to a predictable biological function is central to synthetic biology. Genome engineering tools facilitate rewriting and implementation of engineered DNA sequences. Recent development of new programmable tools to reengineer genomes has spurred myriad advances in synthetic biology. Tools such as clustered regularly interspace short palindromic repeats enable RNA-guided rational redesign of organisms and implementation of synthetic gene systems. New directed evolution methods generate organisms with radically restructured genomes. These restructured organisms have useful new phenotypes for biotechnology, such as bacteriophage resistance and increased genetic stability. Advanced DNA synthesis and assembly methods have also enabled the construction of fully synthetic organisms, such as J. Craig Venter Institute (JCVI)-syn 3.0. Here we summarize the recent advances in programmable genome engineering tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faucon P C, Pardee K, Kumar R M, Li H, Loh Y H, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One, 2014, 9(7): e102873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu F, Menn D J, Wang X. Quorum-sensing crosstalk-driven synthetic circuits: From unimodality to trimodality. Chemistry & Biology, 2014, 21(12): 1629–1638

    Article  CAS  Google Scholar 

  3. Wang L Z, Wu F, Flores K, Lai Y C, Wang X. Build to understand: Synthetic approaches to biology. Integrative Biology, 2016, 8(4): 394–408

    Article  PubMed  Google Scholar 

  4. Brophy J A N, Voigt C A. Principles of genetic circuit design. Nature Methods, 2014, 11(5): 508–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339–342

    Article  CAS  PubMed  Google Scholar 

  6. Litcofsky K D, Afeyan R B, Krom R J, Khalil A S, Collins J J. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nature Methods, 2012, 9(11): 1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellis T, Wang X, Collins J J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 2009, 27(5): 465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu M, Su R Q, Li X, Ellis T, Lai Y C, Wang X. Engineering of regulated stochastic cell fate determination. Proceedings of the National Academy of Sciences, 2013, 201305423

    Google Scholar 

  9. Hutchison C A, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253

    Google Scholar 

  10. Mojica F J M, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(3): 733–740

    Article  CAS  PubMed  Google Scholar 

  11. Brouns S J J, Jore M M, Lundgren M, Westra E R, Slijkhuis R J H, Snijders A P L, Dickman M J, Makarova K S, Koonin E V, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marraffini L A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, 526(7571): 55–61

    Article  CAS  PubMed  Google Scholar 

  13. Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Makarova K S, Haft D H, Barrangou R, Brouns S J J, Charpentier E, Horvath P, Moineau S, Mojica F J M, Wolf Y I, Yakunin A F, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews. Microbiology, 2011, 9(6): 467–477

    Article  CAS  PubMed  Google Scholar 

  15. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 155(2): 479–480

    Article  CAS  Google Scholar 

  20. Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNAguided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6): 569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiani S, Chavez A, Tuttle M, Hall R N, Chari R, Ter-Ovanesyan D, Qian J, Pruitt B W, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12(11): 1051–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kiani S, Beal J, Ebrahimkhani M R, Huh J, Hall R N, Xie Z, Li Y, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature Methods, 2014, 11(7): 723–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Slaymaker I M, Gao L, Zetsche B, Scott D A, Yan W X, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2015, 351(6268): 84–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z, Joung J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P W, Li Z, Peterson R T, Yeh J R J, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kleinstiver B P, Prew M S, Tsai S Q, Nguyen N T, Topkar V V, Zheng Z, Joung J K. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015, 33(12): 1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016, 44(9): e85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3): 233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuhlman T E, Cox E C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010, 38(6): e92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bassalo M C, Garst A D, Halweg-Edwards A L, Grau W C, Domaille D W, Mutalik V K, Arkin A P, Gill R T. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synthetic Biology, 2016, 5(7): 561–568

    Article  CAS  PubMed  Google Scholar 

  33. Standage-Beier K, Zhang Q, Wang X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synthetic Biology, 2015, 4(11): 1217–1225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Q, Chen J, Minton N P, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Journal, 2016, 11(7): 961–972

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Zhang Z T, Seo S O, Choi K, Lu T, Jin Y S, Blaschek H P. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Journal of Biotechnology, 2015, 200: 1–5

    Article  CAS  PubMed  Google Scholar 

  36. Liao C, Seo S O, Celik V, Liu H, Kong W, Wang Y, Blaschek H, Jin Y S, Lu T. Integrated, systems metabolic picture of acetone-butanolethanol fermentation by Clostridium acetobutylicum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8505–8510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mougiakos I, Bosma E F, de Vos W M, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: The CRISPR-Cas toolkit. Trends in Biotechnology, 2016, 34(7): 575–587

    Article  CAS  PubMed  Google Scholar 

  38. Choi K R, Lee S Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34(7): 1180–1209

    Article  CAS  PubMed  Google Scholar 

  39. Jiang W, Marraffini L A. CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 2015, 69(1): 209–228

    Article  CAS  PubMed  Google Scholar 

  40. Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPRCas systems. Nucleic Acids Research, 2013, 41(7): 4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for onestep multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(5): 585–594

    Article  CAS  PubMed  Google Scholar 

  43. Hao H, Wang X, Jia H, Yu M, Zhang X, Tang H, Zhang L. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Analytical Biochemistry, 2016, 509: 118–123

    Article  CAS  PubMed  Google Scholar 

  44. Jakočiūnas T, Rajkumar A S, Zhang J, Arsovska D, Rodriguez A, Jendresen C B, Skjødt M L, Nielsen A T, Borodina I, Jensen M K, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(11): 1226–1234

    Article  CAS  PubMed  Google Scholar 

  45. Tsarmpopoulos I, Gourgues G, Blanchard A, Vashee S, Jores J, Lartigue C, Sirand-Pugnet P. In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synthetic Biology, 2016, 5(1): 104–109

    Article  CAS  PubMed  Google Scholar 

  46. Kannan K, Tsvetanova B, Chuang R Y, Noskov V N, Assad-Garcia N, Ma L, Hutchison C A III, Smith H O, Glass J I, Merryman C, et al. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9. Scientific Reports, 2016, 6: 30714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pál C, Papp B, Pósfai G. The dawn of evolutionary genome engineering. Nature Reviews. Genetics, 2014, 15(7): 504–512

    Article  CAS  PubMed  Google Scholar 

  49. Yokobayashi Y, Weiss R, Arnold F H. Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16587–16591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mosberg J A, LajoieM J, Church G M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 2010, 186(3): 791–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lajoie MJ, Gregg C J, Mosberg J A, Washington G C, Church G M. Manipulating replisome dynamics to enhance lambda red-mediated multiplex genome engineering. Nucleic Acids Research, 2012, 40(22): e170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Isaacs F J, Carr P A, Wang H H, Lajoie M J, Sterling B, Kraal L, Tolonen A C, Gianoulis T A, Goodman D B, Reppas N B, et al. Precise manipulation of chromosomes in vivo enables genome-wide Codon replacement. Science, 2011, 333(6040): 348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lajoie MJ, Rovner A J, Goodman D B, Aerni H R, Haimovich A D, Kuznetsov G, Mercer J A, Wang H H, Carr P A, Mosberg J A, et al. Genomically recoded organisms expand biological functions. Science, 2013, 342(6156): 357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Farzadfard F, Lu T K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science, 2014, 346(6211): 1256272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Perli S D, Cui C H, Lu T K. Continuous genetic recording with selftargeting CRISPR-Cas in human cells. Science, 2016, 353(6304): aag0511

    Google Scholar 

  56. Barrick J E, Yu D S, Yoon S H, Jeong H, Oh T K, Schneider D, Lenski R E, Kim J F. Genome evolution and adaptation in a longterm experiment with Escherichia coli. Nature, 2009, 461(7268): 1243–1247

    Article  CAS  PubMed  Google Scholar 

  57. Cooper V S, Schneider D, Blot M, Lenski R E. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. Journal of Bacteriology, 2001, 183(9): 2834–2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Elena S F, Lenski R E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews. Genetics, 2003, 4(6): 457–469

    Article  CAS  PubMed  Google Scholar 

  59. Kolisnychenko V, Plunkett G, Herring C D, Feher T, Posfai J, Blattner F R, Posfai G. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4): 640–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pósfai G, Plunkett G, Fehér T, Frisch D, Keil G M, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma S S. Arruda M de, et al. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044–1046

    PubMed  Google Scholar 

  61. Csörgő B, Nyerges Á, Pósfai G, Fehér T. System-level genome editing in microbes. Current Opinion in Microbiology, 2016, 33: 113–122

    Article  CAS  PubMed  Google Scholar 

  62. St-Pierre F, Cui L, Priest D G, Endy D, Dodd I B, Shearwin K E. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2013, 2(9): 537–541

    Article  CAS  PubMed  Google Scholar 

  63. Santos C N S, Regitsky D D, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nature Communications, 2013, 4: 2503

    Article  CAS  PubMed  Google Scholar 

  64. Santos C N S, Yoshikuni Y. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering. Nature Protocols, 2014, 9(6): 1320–1336

    Article  CAS  PubMed  Google Scholar 

  65. Enyeart P J, Chirieleison S M, Dao M N, Perutka J, Quandt E M, Yao J, Whitt J T, Keatinge-Clay A T, Lambowitz A M, Ellington A D. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Molecular Systems Biology, 2013, 9(1): 685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Krishnakumar R, Grose C, Haft D H, Zaveri J, Alperovich N, Gibson D G, Merryman C, Glass J I. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases. Nucleic Acids Research, 2014, 42(14): e111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J, Lindstrom D L, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Karpinski J, Hauber I, Chemnitz J, Schäfer C, Paszkowski-Rogacz M, Chakraborty D, Beschorner N, Hofmann-Sieber H, Lange U C, Grundhoff A, et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nature Biotechnology, 2016, 34(4): 401–409

    Article  CAS  PubMed  Google Scholar 

  69. Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345

    Article  CAS  PubMed  Google Scholar 

  70. Lartigue C, Glass J I, Alperovich N, Pieper R, Parmar P P, Hutchison C A, Smith H O, Venter J C. Genome transplantation in bacteria: Changing one species to another. Science, 2007, 317(5838): 632–638

    Article  CAS  PubMed  Google Scholar 

  71. Lartigue C, Vashee S, Algire M A, Chuang R Y, Benders G A, Ma L, Noskov V N, Denisova E A, Gibson D G, Assad-Garcia N, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 2009, 325(5948): 1693–1696

    Article  CAS  PubMed  Google Scholar 

  72. Karas B J, Jablanovic J, Irvine E, Sun L, Ma L, Weyman P D, Gibson D G, Glass J I, Venter J C, Hutchison III C A, et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nature Protocols, 2014, 9(4): 743–750

    Article  CAS  PubMed  Google Scholar 

  73. Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56

    Article  CAS  PubMed  Google Scholar 

  74. Kang H S, Charlop-Powers Z, Brady S F. Multiplexed CRISPR/ Cas9-and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synthetic Biology, 2016, 5(9): 1002–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Temme K, Zhao D, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085–7090

    Article  PubMed  PubMed Central  Google Scholar 

  76. Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249

    Article  CAS  PubMed  Google Scholar 

  77. Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work by the Xiao Wang laboratory has been supported by National Institutes of Health Grant GM106081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Wang.

Additional information

Xiao Wang is an associate professor in Biomedical Engineering at Arizona State University, USA. He received his Ph.D. at the University of North Carolina at Chapel Hill in 2006. As the Principal Investigator of Systems and Synthetic Biology research group, he is interested in using both forward (synthetic biology) and reverse (systems biology) engineering approaches to understand biology. Specific research topics include engineering synthetic multistable gene networks, systems biology research on small network motifs with feedbacks, understanding the role of noise in cell differentiation and development, and analyzing molecular evolution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Standage-Beier, K., Wang, X. Genome reprogramming for synthetic biology. Front. Chem. Sci. Eng. 11, 37–45 (2017). https://doi.org/10.1007/s11705-017-1618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1618-2

Keywords

Navigation