Skip to main content
Log in

ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

ZnFe2O4-BiOCl composites were prepared by both hydrothermal and direct precipitation processes and the structures and properties of the samples were characterized by various instrumental techniques. The samples were then used as catalysts for the photocatalytic reduction of CO2 in cyclohexanol under ultraviolet irradiation to give cyclohexanone (CH) and cyclohexyl formate (CF). The photocatalytic CO2 reduction activities over the hydrothermally prepared ZnFe2O4-BiOCl composites were higher than those over the directly-precipitated composites. This is because compared to the directprecipitation sample, the ZnFe2O4 nanoparticles in the hydrothermal sample were smaller and more uniformly distributed on the surface of BiOCl and so more heterojunctions were formed. Higher CF and CH yields were obtained for the pure BiOCl and BiOCl composite samples with more exposed (001) facets than for the samples with more exposed (010) facets. This is due to the higher density of oxygen atoms in the exposed (001) facets, which creates more oxygen vacancies, and thereby improves the separation efficiency of the electron-hole pairs. More importantly, irradiation of the (001) facets with ultraviolet light produces photo-generated electrons which is helpful for the reduction of CO2 to ∙CO -2 . The mechanism for the photocatalytic reduction of CO2 in cyclohexanol over ZnFe2O4-BiOCl composites with exposed (001) facets involves electron transfer and carbon radical formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He Y, Wang Y, Zhang L, Teng B, Fan M. High-efficiency conversion of CO2 to fuel over ZnO/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2015, 168: 1–8

    Google Scholar 

  2. Ehsan M F, He T. In situ synthesis of ZnO/ZnTe common cation heterostructure and its visible-light photocatalytic reduction of CO2 into CH4. Applied Catalysis B: Environmental, 2015, 166: 345–352

    Article  CAS  Google Scholar 

  3. Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Zhou S, Li J, Wang Y, Jiang G, Zhao Z, Liu B, Gong X, Duan A, Liu J, Wei Y, Zhang L. Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity. Applied Catalysis B: Environmental, 2015, 168: 125–131

    Article  CAS  Google Scholar 

  5. Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z. Highyield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. Journal of the American Chemical Society, 2010, 132(41): 14385–14387

    Article  CAS  PubMed  Google Scholar 

  6. Fan W, Zhang Q, Wang Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. Physical Chemistry Chemical Physics, 2013, 15(8): 2632–2649

    Article  CAS  PubMed  Google Scholar 

  7. Richardson P L, Perdigoto M L N, Wang W, Lopes R J G. RETRACTED: Heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper-and gallium-doped titania nanocomposites. Applied Catalysis B: Environmental, 2013, 132: 408–415

    Article  CAS  Google Scholar 

  8. Asi MA, He C, Su M, Xia D, Lin L, Deng H, Xiong Y, Qiu R, Li X. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catalysis Today, 2011, 175(1): 256–263

    Article  CAS  Google Scholar 

  9. He Z, Wen L, Wang D, Xue Y, Lu Q, Wu C, Chen J, Song S. Photocatalytic reduction of CO2 in aqueous solution on surfacefluorinated anatase TiO2 nanosheets with exposed {001} facets. Energy & Fuels, 2014, 28(6): 3982–3993

    Article  CAS  Google Scholar 

  10. Xu H, Ouyang S, Li P, Kako T, Ye J. High-active anatase TiO2 nanosheets exposed with 95% {100} facets toward efficient H2 evolution and CO2 photoreduction. ACS Applied Materials & Interfaces, 2013, 5(4): 1348–1354

    Article  CAS  Google Scholar 

  11. Wang W N, Wu F, Myung Y, Niedzwiedzki D M, Im H S, Park J, Banerjee P, Biswas P. Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction. ACS Applied Materials & Interfaces, 2015, 7(10): 5685–5692

    Article  CAS  Google Scholar 

  12. Zhou Y, Tian Z, Zhao Z, Liu Q, Kou J, Chen X, Gao J, Yan S, Zou Z. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Applied Materials & Interfaces, 2011, 3(9): 3594–3601

    Article  CAS  Google Scholar 

  13. Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z. Highyield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. Journal of the American Chemical Society, 2010, 132(41): 14385–14387

    Article  CAS  PubMed  Google Scholar 

  14. Chen X, Zhou Y, Liu Q, Li Z, Liu J, Zou Z. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Applied Materials & Interfaces, 2012, 4(7): 3372–3377

    Article  CAS  Google Scholar 

  15. Li X, Liu H, Luo D, Li J, Huang Y, Li H, Fang Y, Xu Y, Zhu L. Adsorption of CO2 on heterostructure CdS (Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chemical Engineering Journal, 2012, 180: 151–158

    Article  CAS  Google Scholar 

  16. Li X, Zhuang Z, Li W, Pan H. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A, General, 2012, 429: 31–38

    Article  CAS  Google Scholar 

  17. Xia J, Xu L, Zhang J, Yin S, Li H, Xu H, Di J. Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids. CrystEngComm, 2013, 15(46): 10132–10141

    Article  CAS  Google Scholar 

  18. Zhang K, Liang J, Wang S, Liu J, Ren K, Zheng X, Luo H, Peng Y, Zou X, Bo X, Li J, Yu X. BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities. Crystal Growth & Design, 2012, 12(2): 793–803

    Article  CAS  Google Scholar 

  19. Zhu L P, Liao G H, Bing N C, Wang L L, Yang Y, Xie H Y. Selfassembled 3D BiOCl hierarchitectures: Tunable synthesis and characterization. CrystEngComm, 2010, 12(11): 3791–3796

    Article  CAS  Google Scholar 

  20. Jiang J, Zhao K, Xiao X, Zhang L. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society, 2012, 134(10): 4473–4476

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Zhang L. Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr (VI) and sodium pentachlorophenate removal under visible light. Nanoscale, 2014, 6(14): 7805–7810

    Article  CAS  PubMed  Google Scholar 

  22. Lin H, Ding L, Pei Z, Zhou Y, Long J, Deng W, Wang X. Au deposited BiOCl with different facets: On determination of the facetinduced transfer preference of charge carriers and the different plasmonic activity. Applied Catalysis B: Environmental, 2014, 160: 98–105

    Article  CAS  Google Scholar 

  23. Fu Y, Wang X. Magnetically separable ZnFe2O4-graphene catalyst and its high photocatalytic performance under visible light irradiation. Industrial & Engineering Chemistry Research, 2011, 50(12): 7210–7218

    Article  CAS  Google Scholar 

  24. Kong L, Jiang Z, Xiao T, Lu L, Jonesac M O, Edwards Peter P. Exceptional visible-light-driven photocatalytic activity over BiOBr-ZnFe2O4 heterojunctions. Chemical Communications, 2011, 47(19): 5512–5514

    Article  CAS  PubMed  Google Scholar 

  25. Song G, Xin F, Yin X. Photocatalytic reduction of carbon dioxide over ZnFe2O4/TiO2 nanobeltsheterostructure in cyclohexanol. Journal of Colloid and Interface Science, 2015, 442: 60–66

    Article  CAS  PubMed  Google Scholar 

  26. Yu T H, Cheng W Y, Chao K J, Lu S Y. ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale, 2013, 5(16): 7356–7360

    Article  CAS  Google Scholar 

  27. Wang M, Sun L, Cai J, Huang P, Su Y, Lin C. A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(39): 12082–12087

    Article  CAS  Google Scholar 

  28. Guan M, Xiao C, Zhang J, Fan S, An R, Cheng Q, Xie J, Zhou M, Ye B, Xie Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. Journal of the American Chemical Society, 2013, 135(28): 10411–10417

    Article  CAS  PubMed  Google Scholar 

  29. Zhang X, Wang X B, Wang L W, Wang WK. Long L L, Li WW, Yu H Q. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Applied Materials & Interfaces, 2014, 6(10): 7766–7772

    Article  CAS  Google Scholar 

  30. Zhang N, Yang M Q, Tang Z R, Xu Y J. CdS-graphene nanocomposites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation. Journal of Catalysis, 2013, 303: 60–69

    Article  CAS  Google Scholar 

  31. Song G, Xin F, Chen J, Yin X. Photocatalytic reduction of CO2 in cyclohexanol on CdS-TiO2 heterostructuredphotocatalyst. Applied Catalysis A, General, 2014, 473: 90–95

    Article  CAS  Google Scholar 

  32. Ye L, Zan L, Tian L, Peng T, Zhang J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chemical Communications, 2011, 47(24): 6951–6953

    Article  CAS  PubMed  Google Scholar 

  33. Ye L, Deng K, Xu F, Tian L, Peng T, Zan L. Increasing visible-light absorption for photocatalysis with black BiOCl. Physical Chemistry Chemical Physics, 2012, 14(1): 82–85

    Article  CAS  PubMed  Google Scholar 

  34. Zhang S, Li J, Zeng M, Zhao G, Xu J, Hu W, Wang X. In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Applied Materials & Interfaces, 2013, 5(23): 12735–12743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21176192).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Xin or Xiaohong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Wu, X., Xin, F. et al. ZnFe2O4 deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Front. Chem. Sci. Eng. 11, 197–204 (2017). https://doi.org/10.1007/s11705-016-1606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1606-y

Keywords

Navigation