Advertisement

Frontiers of Chemical Science and Engineering

, Volume 11, Issue 1, pp 117–125 | Cite as

Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae

  • Duo Liu
  • Bingzhi Li
  • Hong Liu
  • Xuejiao Guo
  • Yingjin Yuan
Research Article

Abstract

Metabolic engineering of heterologous resveratrol production in Saccharomyces cerevisiae faces challenges as the precursor l-tyrosine is stringently regulated by a complex biosynthetic system. We overexpressed the main gene targets in the upstream pathways to investigate their influences on the downstream resveratrol production. Single-gene overexpression and DNA assembly-directed multigene overexpression affect the production of resveratrol as well as its precursor p-coumaric acid. Finally, the collaboration of selected gene targets leads to an optimal resveratrol production of 66.14±3.74 mg·L–1, 2.27 times higher than the initial production in YPD medium (4% glucose). The newly discovered gene targets TRP1 expressing phosphoribosylanthranilate isomerase, ARO3 expressing 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, and 4CL expressing 4-coumaryl-CoA ligase show notable positive impacts on resveratrol production in S. cerevisiae.

Keywords

resveratrol aromatic amino acid DNA assembly metabolic engineering gene overexpression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors declare no competing financial interest. This work was funded by the National Basic Research Program of China (973 Program, Grant No. 2014CB745100) and the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA02A701), the International S&T Cooperation Program of China (2015DFA00960), and the National Natural Science Foundation of China (Major Program, Grant No. 21390203).

References

  1. 1.
    Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S, Courot E. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. Journal of Biomedicine & Biotechnology, 2012, 579089Google Scholar
  2. 2.
    Mei Y Z, Liu R X, Wang D P, Wang X, Dai C C. Biocatalysis and bio-transformation of resveratrol in microorganisms. Biotechnology Letters, 2015, 37(1): 9–18CrossRefPubMedGoogle Scholar
  3. 3.
    Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnology Journal, 2014, 9(5): 609–620CrossRefPubMedGoogle Scholar
  4. 4.
    Becker J V, Armstrong G O, vander Merwe M J, Lambrechts M G, Vivier M A, Pretorius I S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Research, 2003, 4(1): 79–85CrossRefPubMedGoogle Scholar
  5. 5.
    Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos C H, Bovy A. Production of resveratrol in recombinant microorganisms. Applied and Environmental Microbiology, 2006, 72(8): 5670–5672CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang Y, Li S Z, Li J, Pan X, Cahoon R E, Jaworski J G, Wang X, Jez J M, Chen F, Yu O. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells. Journal of the American Chemical Society, 2006, 128(40): 13030–13031CrossRefPubMedGoogle Scholar
  7. 7.
    Shin S Y, Jung S M, Kim M D, Han N S, Seo J H. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2012, 51(4): 211–216CrossRefPubMedGoogle Scholar
  8. 8.
    Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metabolic Engineering, 2009, 11(6): 355–366CrossRefPubMedGoogle Scholar
  9. 9.
    Yan Y, Kohli A, Koffas M A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71(9): 5610–5613CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kumar S, Omer S, Chitransh S, Khan B M. Cinnamate 4-hydroxylase downregulation in transgenic tobacco alters transcript level of other phenylpropanoid pathway genes. International Journal of Advanced Biotechnology and Research, 2012, 3(2): 545–557Google Scholar
  11. 11.
    Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metabolic Engineering, 2011, 13(5): 455–463CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Yu O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. Journal of Biotechnology, 2012, 157(1): 258–260CrossRefPubMedGoogle Scholar
  13. 13.
    Luttik M A, Vuralhan Z, Suir E, Braus G H, Pronk J T, Daran J M. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metabolic Engineering, 2008, 10(3-4): 141–153CrossRefPubMedGoogle Scholar
  14. 14.
    Rodriguez A, Kildegaard K R, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic Engineering, 2015, 31: 181–188CrossRefPubMedGoogle Scholar
  15. 15.
    Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall R D, Bosch D, van Maris A J, Pronk J T, Daran J M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11(1): 155CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Juminaga D, Baidoo E E K, Redding-Johanson A M, Batth T S, Burd H, Mukhopadhyay A, Petzold C J, Keasling J D. Modular engineering of l-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2012, 78(1): 89–98CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Reid R J, Sunjevaric I, Kedacche M, Rothstein R. Efficient PCRbased gene disruption in Saccharomyces strains using intergenic primers. Yeast (Chichester, England), 2002, 19(4): 319–328CrossRefGoogle Scholar
  18. 18.
    Gietz R D, Schiestl R H, Willems A R, Woods R A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast (Chichester, England), 1995, 11(4): 355–360CrossRefGoogle Scholar
  19. 19.
    Sun J, Shao Z Y, Zhao H, Nair N, Wen F, Xu J H, Zhao H. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2012, 109(8): 2082–2092CrossRefPubMedGoogle Scholar
  20. 20.
    Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Research, 2008, 37(2): e16CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Applied and Environmental Microbiology, 2010, 76(10): 3361–3363CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Braus G, Paravicini G, Hütter R. A consensus transcription termination sequence in the promoter region is necessary for efficient gene expression of the TRP1 gene of Saccharomyces cerevisiae. Molecular & General Genetics, 1988, 212(3): 495–504CrossRefGoogle Scholar
  23. 23.
    Kim S, Mellor J, Kingsman A J, Kingsman S M. Multiple control element in the TRP1 promoter of Saccharomyces cerevisiae. Molecular and Cellular Biology, 1986, 6(12): 4251–4258CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Teshiba S, Furter R, Niederberger P, Braus G, Paravicini G. Cloning of the ARO3 gene of Saccharomyces cerevisiae and its regulation. Molecular & General Genetics, 1986, 205(2): 353–357CrossRefGoogle Scholar
  25. 25.
    Du J, Yuan Y B, Si T, Lian J Z, Zhao H M. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 2012, 40(18): e142CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Luo Y, Li B Z, Liu D, Zhang L, Chen Y, Jia B, Zeng B X, Zhao H, Yuan Y J. Engineered biosynthesis of natural products in heterologous hosts. Chemical Society Reviews, 2015, 44(15): 5265–5290CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Santos C N, Stephanopoulos G. Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Duo Liu
    • 1
    • 2
  • Bingzhi Li
    • 1
    • 2
  • Hong Liu
    • 1
    • 2
  • Xuejiao Guo
    • 1
    • 2
  • Yingjin Yuan
    • 1
    • 2
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina

Personalised recommendations