Skip to main content
Log in

Where physics meets chemistry: Thin film deposition from reactive plasmas

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Functionalising surfaces using polymeric thin films is an industrially important field. One technique for achieving nanoscale, controlled surface functionalization is plasma deposition. Plasma deposition has advantages over other surface engineering processes, including that it is solvent free, substrate and geometry independent, and the surface properties of the film can be designed by judicious choice of precursor and plasma conditions. Despite the utility of this method, the mechanisms of plasma polymer growth are generally unknown, and are usually described by chemical (i.e., radical) pathways. In this review, we aim to show that plasma physics drives the chemistry of the plasma phase, and surface-plasma interactions. For example, we show that ionic species can react in the plasma to form larger ions, and also arrive at surfaces with energies greater than 1000 kJ∙mol–1 (>10 eV) and thus facilitate surface reactions that have not been taken into account previously. Thus, improving thin film deposition processes requires an understanding of both physical and chemical processes in plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatelier R C, Dai L, Griesser H J, Li S, Zientek P, Lohmann D, Chabrecek P U S. Patent, 6623747, 2003-09-23

  2. Moustafa M, Simpson C, Glover M, Dawson R A, Tesfaye S, Creagh F M, Haddow D, Short R, Heller S, MacNeil S. A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabetic Medicine, 2004, 21(7): 786–789

    Article  CAS  PubMed  Google Scholar 

  3. Yasuda H. Plasma Polymerization. New York: Academic Press, 1985

    Google Scholar 

  4. Kettle A, Beck A J, O’Toole L, Jones F, Short R. Plasma polymerisation for molecular engineering of carbon-fibre surfaces for optimised composites. Composites Science and Technology, 1997, 57(8): 1023–1032

    Article  CAS  Google Scholar 

  5. Lopattananon N, Kettle A, Tripathi D, Beck A J, Duval E, France R M, Short R D, Jones F R. Interface molecular engineering of carbonfibercomposites. Composites. Part A, Applied Science and Manufacturing, 1999, 30(1): 49–57

    Article  Google Scholar 

  6. Beck A J, Jones F R, Short R D. Plasma copolymerization as a route to the fabrication of new surfaces with controlled amounts of specific chemical functionality. Polymer, 1996, 37(24): 5537–5539

    Article  CAS  Google Scholar 

  7. Michelmore A, Whittle J D, Short R D, Boswell RW, Charles C. An Experimental and analytical study of an asymmetric capacitively coupled plasma used for plasma polymerization. Plasma Processes and Polymers, 2014, 11(9): 833–841

    Article  CAS  Google Scholar 

  8. Suzuki K, Nakamura K, Ohkubo H, Sugai H. Power transfer efficiency and mode jump in an inductive RF discharge. Plasma Sources Science & Technology, 1998, 7(1): 13–20

    Article  CAS  Google Scholar 

  9. Ward R J. Molecular engineering of surfaces by plasma copolymerization and enhanced cell attachment and spreading. Dissertation for the Doctoral Degree. UK: University of Durham, 1989

  10. Beyer D, Knoll W, Ringsdorf H, Wang J H, Timmons R B, Sluka P. Reduced protein adsorption on plastics via direct plasma deposition of triethylene glycol monoallyl ether. Journal of Biomedical Materials Research. Part A, 1997, 36(2): 181–189

    Article  CAS  Google Scholar 

  11. Padron-Wells G, Estrada-Raygoza I C, Thamban P L S, Nelson C T, Chung C W, Overzet L J, Goeckner M J. Understanding the synthesis of ethylene glycol pulsed plasma discharges. Plasma Processes and Polymers, 2013, 10(2): 119–135

    Article  CAS  Google Scholar 

  12. Chen R T, Muir B W, Thomsen L, Tadich A, Cowie B C C, Such G K, Postma A, McLean K M, Caruso F. New insights into the substrate plasma polymer interface. Journal of Physical Chemistry B, 2011, 115(20): 6495–6502

    Article  CAS  Google Scholar 

  13. Daw R, O’Leary T, Kelly J, Short R D, Cambray-Deakin M, Devlin A J, Brook I M, Scutt A, Kothari S. Molecular engineering of surfaces by plasma copolymerization and enhanced cell attachment and spreading. Plasmas and Polymers, 1999, 4(2-3): 113–132

    Article  CAS  Google Scholar 

  14. Daw R, Candan S, Beck A, Devlin A, Brook I, MacNeil S, Dawson D A, Short R D. Plasma copolymer surfaces of acrylic acid/1, 7-octadiene: Surface characterisation and the attachment of ROS 17/2. 8-osteoblast-like cells. Biomaterials, 1998, 19(19): 1717–1725

    CAS  PubMed  Google Scholar 

  15. Michelmore A, Steele D A, Robinson D E, Whittle J D, Short R D. The link between mechanisms of deposition and the physicochemical properties of plasma polymer films. Soft Matter, 2013, 9(26): 6167–6175

    Article  CAS  Google Scholar 

  16. Whittle J D, Short R D, Douglas C, Davies J. Differences in the aging of allyl alcohol, acrylic acid, allylamine, and octa-1, 7-diene plasma polymers as studied by X-ray photoelectron spectroscopy. Chemistry of Materials, 2000, 12(9): 2664–2671

    Article  CAS  Google Scholar 

  17. Gengenbach T R, Chatelier R C, Griesser H J. Characterization of the ageing of plasma-deposited polymer films: Global analysis of xray photoelectron spectroscopy data. Surface and Interface Analysis, 1996, 24(4): 271–281

    Article  CAS  Google Scholar 

  18. Haddow D B, Steele D, Short R D, Dawson R A, Macneil S. Plasma–polymerized surfaces for culture of human keratinocytes and transfer of cells to an in vitro wound–bed model. Journal of Biomedical Materials Research. Part A, 2003, 64A(1): 80–87

    Article  CAS  Google Scholar 

  19. Padron-Wells G, Jarvis B C, Jindal A K, Goeckner M J. Understanding the synthesis of DEGVE pulsed plasmas for application to ultra thin biocompatible interfaces. Colloids and Surfaces. B, Biointerfaces, 2009, 68(2): 163–170

    Article  CAS  PubMed  Google Scholar 

  20. Michelmore A, Bryant P M, Steele D A, Vasilev K, Bradley J W, Short R D. Role of positive ions in determining the deposition rate and film chemistry of continuous wave hexamethyldisiloxane plasmas. Langmuir, 2011, 27(19): 11943–11950

    Article  CAS  PubMed  Google Scholar 

  21. Michelmore A, Gross-Kosche P, Al-Bataineh S A, Whittle J D, Short R D. On the effect of monomer chemistry on growth mechanisms of nonfouling PEG-like plasma polymers. Langmuir, 2013, 29(8): 2595–2601

    Article  CAS  PubMed  Google Scholar 

  22. Choukourov A, Biederman H, Slavinska D, Hanley L, Grinevich A, Boldryeva H, Mackova A. Mechanistic studies of plasma polymerization of allylamine. Journal of Physical Chemistry B, 2005, 109(48): 23086–23091

    Article  CAS  Google Scholar 

  23. Michelmore A, Charles C, Boswell R W, Short R D, Whittle J D. Defining plasma polymerization: New insight into what we should be measuring. ACS Applied Materials & Interfaces, 2013, 5(12): 5387–5391

    Article  CAS  Google Scholar 

  24. Daunton C, Smith L E, Whittle J D, Short R D, Steele D A, Michelmore A. Plasma parameter aspects in the fabrication of stable amine functionalized plasma polymer films. Plasma Processes and Polymers, 2015, 12(8): 817–826

    Article  CAS  Google Scholar 

  25. Saboohi S, Jasieniak M, Coad B R, Griesser H J, Short R D, Michelmore A. Comparison of plasma polymerization under collisional and collision-less pressure regimes. Journal of Physical Chemistry B, 2015, 119(49): 15359–15369

    Article  CAS  Google Scholar 

  26. Zhang Z H, Liu S L, Shi Y, Dou J, Fang S M. DNA detection and cell adhesion on plasma-polymerized pyrrole. Biopolymers, 2014, 101(5): 496–503

    Article  CAS  PubMed  Google Scholar 

  27. Wang L, Liu X J, Hao J, Chu L Q. Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films. Sensors and Actuators. B, Chemical, 2015, 215: 368–372

    Article  CAS  Google Scholar 

  28. Jiang Z, Jiang Z J. Plasma techniques for the fabrication of polymer electrolyte membranes for fuel cells. Journal of Membrane Science, 2014, 456: 85–106

    Article  CAS  Google Scholar 

  29. Hua J, Zhanga C, Jiangb L, Fanga S, Zhanga X, Wanga X, Menga Y. Plasma graft-polymerization for synthesis of highly stable hydroxide exchange membrane. Journal of Power Sources, 2014, 248: 831–838

    Article  CAS  Google Scholar 

  30. Zhao X Y, Wang MZ, Ji J Q, Wang T H, Yang F, Du J M. Structural analysis and dielectric property of novel conjugated polycyanurates. Polymer Engineering and Science, 2014, 54(4): 812–817

    Article  CAS  Google Scholar 

  31. Li P H, Li L M, Wang W H, Jin W H, Liu X M, Yeung K W K, Chu P K. Enhanced corrosion resistance and hemocompatibility of biomedical NiTi alloy by atmospheric-pressure plasma polymerized fluorine-rich coating. Applied Surface Science, 2014, 297: 109–115

    Article  CAS  Google Scholar 

  32. Feng Y E, Liao X P, Wang Y N, Shi B. Improvement in leather surface hydrophobicity through low-pressure cold plasma polymerization. Journal of the American Leather Chemistry Association, 2014, 109(3): 89–95

    CAS  Google Scholar 

  33. Yang Z L, Xiong K Q, Qi P K, Yang Y, Tu Q F, Wang J, Huang N. Gallic acid tailoring surface functionalities of plasma-polymerized allylamine-coated 316L SS to selectively direct vascular endothelial and smooth muscle cell fate for enhanced endothelialization. ACS Applied Materials & Interfaces, 2014, 6(4): 2647–2656

    Article  CAS  Google Scholar 

  34. Li J W, Wu Z X, Huang C J, Liu H M, Huang R J, Li L F. Mechanical properties of cyanate ester/epoxy nanocomposites modified with plasma functionalized MWCNTs. Composites Science and Technology, 2014, 90: 166–173

    Article  CAS  Google Scholar 

  35. Sun Y Y, Liang Q, Chi H J, Zhang Y J, Shi Y, Fang D N, Li F X. The Application of gas plasma technologies in surface modification of aramid fiber. Fibers and Polymers, 2014, 15(1): 1–7

    Article  CAS  Google Scholar 

  36. Tian M, Yin Y, Yang C, Zhao B, Song J, Liu J, Li X M, He T. CF4 plasma modified highly interconnective porous polysulfone membranes for direct contact membrane distillation (DCMD). Desalination, 2015, 369: 105–114

    Article  CAS  Google Scholar 

  37. Ma G Q, Liu Y, Wei S, Sheng J. Surface modification of polypropylene by ethylene plasma and its induced ß-form in polypropylene. Chinese Journal of Polymer Science, 2015, 33(5): 669–673

    Article  CAS  Google Scholar 

  38. Wan S J, Wang L, Xu X J, Zhao C H, Liu X D. Controllable surface morphology and properties via mist polymerization on a plasmatreated polymethyl methacrylate surface. Soft Matter, 2014, 10(6): 903–910

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Z G, Zhang T Z, Li J S, Ji Z L, Zhou H M, Zhou X F, Gu N. Preparation of poly(L-lactic acid)-modified polypropylene mesh and its antiadhesion in experimental abdominal wall defect repair. Journal of Biomedical Materials Research Part B, 2014, 102(1): 12–21

    Article  CAS  Google Scholar 

  40. Denaro A R, Owens P A, Crawshaw A. Glow discharge polymerization—styrene. European Polymer Journal, 1968, 4(1): 93–106

    Article  CAS  Google Scholar 

  41. Westwood A R. Glow discharge polymerization—rates and mechanisms of polymer formation. European Polymer Journal, 1971, 7(4): 363–375

    Article  CAS  Google Scholar 

  42. Michelmore A, Steele D A, Whittle J D, Bradley J W, Short R D. Nanoscale deposition of chemically functionalised films via plasma polymerisation. RSC Advances, 2013, 3(33): 13540–13557

    Article  CAS  Google Scholar 

  43. Chabert P, Braithwaite N. Physics of Radio-Frequency Plasmas. Cambridge: Academic Press, 2011

    Book  Google Scholar 

  44. Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. Chichester: John Wiley and Sons, 1994

    Google Scholar 

  45. Hulburt E O. Atmospheric ionization by cosmic radiation. Physical Review, 1931, 37(1): 1–8

    Article  Google Scholar 

  46. Blanksby S J, Ellison G B. Bond dissociation energies of organic molecules. Accounts of Chemical Research, 2003, 36(4): 255–263

    Article  CAS  PubMed  Google Scholar 

  47. Johnston E E, Beyers J D, Ratner B D. Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. Langmuir, 2005, 21(3): 870–881

    Article  CAS  PubMed  Google Scholar 

  48. Menzies D J, Cowie B, Fong C, Forsythe J S, Gengenbach T R, McLean K M, Puskar L, Textor M, Thomsen L, Tobin M, Muir B W. One-step method for generating PEG-Like plasma polymer gradients: Chemical characterization and analysis of protein interactions. Langmuir, 2010, 26(17): 13987–13994

    Article  CAS  PubMed  Google Scholar 

  49. Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953

    Google Scholar 

  50. Agarwal S, Quax G W W, van de Senden M C M, Maroudas D, Aydil E S. Measurement of absolute radical densities in a plasma using modulated-beam line-of-sight threshold ionization mass spectrometry. Journal of Vacuum Science and Technology Part A, 2004, 22(1): 71–81

    Article  CAS  Google Scholar 

  51. Booth J P, Corr C S, Curley G A, Jolly J, Guillon J, Földes T. Fluorine negative ion density measurement in a dual frequency capacitive plasma etch reactor by cavity ring-down spectroscopy. Applied Physics Letters, 2006, 88(15): 151502

    Article  CAS  Google Scholar 

  52. Whittle J D, Short R D, Steele D A, Bradley J W, Bryant P M, Jan F, Biederman H, Serov A A, Choukurov A, Hook A L, Ciridon WA, Ceccone G, Hegemann D, Korner E, Michelmore A. Variability in plasma polymerization processes—an international round-robin study. Plasma Processes and Polymers, 2013, 10(9): 767–778

    Article  CAS  Google Scholar 

  53. Williams T, Hayes M W. Polymerization in a glow discharge. Nature, 1966, 209(5025): 769–773

    Article  CAS  Google Scholar 

  54. Chapman B. Glow Discharge Processes. Chichester: John Wiley and Sons, 1980

    Google Scholar 

  55. Doyle J R. Chemical kinetics in low pressure acetylene radio frequency glow discharges. Journal of Applied Physics, 1997, 82(10): 4763–4771

    Article  CAS  Google Scholar 

  56. O’Toole L, Mayhew C A, Short R D. On the plasma polymerisation of allyl alcohol: An investigation of ion-molecule reactions using a selected ion flow tube. Journal of the Chemical Society, Faraday Transactions, 1997, 93(10): 1961–1964

    Article  Google Scholar 

  57. Stoykov S, Eggs C, Kortshagen U. Plasma chemistry and growth of nanosized particles in a C2H2 RF discharge. Journal of Physics. D, Applied Physics, 2001, 34(14): 2160–2173

    Article  CAS  Google Scholar 

  58. Oh J S, Bradley J W. Heavy ion formation in plasma jet polymerization of heptylamine at atmospheric pressure. Plasma Processes and Polymers, 2013, 10(10): 839–842

    CAS  Google Scholar 

  59. O’Toole L, Short R D, Ameen A P, Jones F R. Mass spectrometry of and deposition-rate measurements from radiofrequency-induced plasmas of methyl isobutyrate, methyl methacrylate and n-butyl methacrylate. Journal of the Chemical Society, Faraday Transactions, 1995, 91(9): 1363–1370

    Article  Google Scholar 

  60. Bohm D. Minimum ionic kinetic energy for a stable sheath. In: Guthrie A, Wakerling R K, eds. The Characteristics of Electrical Discharges in Magnetic Fields. London: McGrawHill, 1949, 77–86

    Google Scholar 

  61. Vender D, Boswell R W. Numerical modeling of low-pressure RF plasma. IEEE Transactions on Plasma Science, 1990, 18(4): 725–732

    Article  Google Scholar 

  62. Jacobs D C. Reactive collisions of hyperthermal energy molecular ions with solid surfaces. Annual Review of Physical Chemistry, 2002, 53(1): 379–407

    Article  CAS  PubMed  Google Scholar 

  63. Titus M J, Nest D, Graves D B. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist. Applied Physics Letters, 2009, 94(17): 171501

    Article  CAS  Google Scholar 

  64. Truica-Marasescu F, Wertheimer M R. Vacuum-ultraviolet photopolymerisation of amine-rich thin films. Macromolecular Chemistry and Physics, 2008, 209(10): 1043–1049

    Article  CAS  Google Scholar 

  65. Barton D, Bradley J W, Gibson K J, Steele D A, Short R D. An in situ comparison between VUV photon and ion energy fluxes to polymer surfaces immersed in an RF plasma. Journal of Physical Chemistry B, 2000, 104(30): 7150–7153

    Article  CAS  Google Scholar 

  66. Haller I, White P. Polymerization of butadiene gas on surfaces under low energy electron bombardment. Journal of Physical Chemistry, 1963, 67(9): 1784–1788

    Article  CAS  Google Scholar 

  67. Peter S, Graupner K, Grambole D, Richter F. Comparative experimental analysis of the a-C:H deposition processes using CH4 and C2H2 as precursors. Journal of Applied Physics, 2007, 102 (5): 053304

    Article  CAS  Google Scholar 

  68. Shen M, Bell A T. A review of recent advances in plasma polymerization. In: Plasma Polymerization. ACS Symposium Series. Washington, DC: American Chemical Society, 1979, 1–33

    Chapter  Google Scholar 

  69. Friedrich J. Plasma processes and polymers, mechanisms of plasma polymerization—reviewed from a chemical point of view. Plasma Processes and Polymers, 2011, 8(9): 783–802

    Article  CAS  Google Scholar 

  70. Milella A, Palumbo F, Favia P, Cicala G, d’Agostino R. Continuous and modulated deposition of fluorocarbon films from c-C4F8 plasmas. Plasma Processes and Polymers, 2004, 1(2): 164–170

    Article  CAS  Google Scholar 

  71. Hegemann D, Hanselmann B, Blanchard N, Amberg M. Plasmasubstrate interaction during plasma deposition on polymers. Contributions to Plasma Physics, 2014, 54(2): 162–169

    Article  CAS  Google Scholar 

  72. Thiry D, Konstantinidis S, Cornil J, Snyders R. Plasma diagnostics for the low-pressure plasma polymerization process: A critical review. Thin Solid Films, 2016, 606: 19–44

    Article  CAS  Google Scholar 

  73. Ershov S, Khelifa F, Lemaur V, Cornil J, Cossement D, Habibi Y, Dubois P, Snyders R. Free radical generation and concentration in a plasma polymer: The effect of aromaticity. ACS Applied Materials & Interfaces, 2014, 6(15): 12395–12405

    Article  CAS  Google Scholar 

  74. Von Keudell A, Schwartz-Selinger T, Meier M, Jacob W. Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films. Applied Physics Letters, 2000, 76(6): 676–678

    Article  Google Scholar 

  75. McNaught A D, Wilkinson A. IUPAC Compendium of Chemical Terminology, 2nd ed. Oxford: Blackwell Scientific Publications, 1997

    Google Scholar 

  76. O’Toole L, Beck A J, Ameen A P, Jones F R, Short R D. Radiofrequency-induced plasma polymerisation of propenoic acid and propanoic acid. Journal of the Chemical Society, Faraday Transactions, 1995, 91(21): 3907–3912

    Article  Google Scholar 

  77. Brookes P N, Fraser S, Short R D, Hanley L, Fuoco E, Roberts A, Hutton S J. The effect of ion energy on the chemistry of air-aged polymer films grown from the hyperthermal polyatomic ion Si2OMe+ 5. Electron Spectroscopy and Related Phenomena, 2001, 121(1-3): 281–297

    Article  CAS  Google Scholar 

  78. Beck A J, Candan S, Short R D, Goodyear A, Braithwaite N, St J. The role of ions in the plasma polymerization of allylamine. Journal of Physical Chemistry B, 2001, 105(24): 5730–5736

    Article  CAS  Google Scholar 

  79. Michelmore A, Whittle J D, Short R D. The importance of ions in low pressure PECVD plasmas. Frontiers in Physics, 2015, 3: 3

    Article  Google Scholar 

  80. von Keudell A. Surface processes during thin-film growth. Plasma Sources Science & Technology, 2000, 9(4): 455–467

    Article  Google Scholar 

  81. Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. Free-radicalinduced grafting from plasma polymer surfaces. Chemical Reviews, 2016, 116(6): 3975–4005

    Article  CAS  PubMed  Google Scholar 

  82. Coad B R, Styan K E, Meagher L. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS Applied Materials & Interfaces, 2014, 6(10): 7782–7789

    Article  CAS  Google Scholar 

  83. Blanchard N E, Hanselmann B, Drosten J, Heunberger M, Hegemann D. Densification and hydration of HMDSO plasma polymers. Plasma Processes and Polymers, 2015, 12(1): 32–41

    Article  CAS  Google Scholar 

  84. Ryssy J, Prioste-Amaral E, Assuncao D F N, Rogers N, Kirby G T S, Smith L E, Michelmore A. Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy. Physical Chemistry Chemical Physics, 2016, 18(6): 4496–4504

    Article  CAS  PubMed  Google Scholar 

  85. Hopp I, Michelmore A, Smith L E, Robinson D E, Bachhuka A, Mierczynska A, Vasilev K. The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials, 2013, 34(21): 5070–5077

    Article  CAS  PubMed  Google Scholar 

  86. Memming R, Tolle H J, Wierenga P E. Properties of polymeric layers of hydrogenated amorphous carbon produced by a plasmaactivated chemical vapour deposition process II: Tribological and mechanical properties. Thin Solid Films, 1986, 143(1): 31–41

    Article  CAS  Google Scholar 

  87. Pappas D L, Hopwood J. Deposition of diamondlike carbon using a planar radio frequency induction plasma. Journal of Vacuum Science and Technology Part A, 1994, 12(4): 1576–1582

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew Michelmore or Robert D. Short.

Additional information

Andrew Michelmore obtained his B.E. (Chem) from the University of Adelaide before starting his PhD in Physical Chemistry at the Ian Wark Research Institute, University of South Australia (UniSA) which he completed in 2001. After working on projects related to minerals processing for 3 years at UniSA, he worked in industry for 4 years in analytical laboratories for the wine and vaccine industries. He re-joined UniSA in 2008 and is now a Senior Research Fellow in the School of Engineering where he teaches Materials Science. He is also a member of the Future Industries Institute at UniSA, where his research interests are in understanding the physical and chemical mechanisms of plasma polymerisation, surface interactions and surface analysis. He applies his knowledge of Materials Science and Surface Engineering in the fields of health and biomedical sciences, particularly on mediating cell-surface interactions using functionalised thin films.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michelmore, A., Whittle, J.D., Bradley, J.W. et al. Where physics meets chemistry: Thin film deposition from reactive plasmas. Front. Chem. Sci. Eng. 10, 441–458 (2016). https://doi.org/10.1007/s11705-016-1598-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1598-7

Keywords

Navigation