Frontiers of Chemical Science and Engineering

, Volume 10, Issue 4, pp 459–471 | Cite as

Combustion mechanism development and CFD simulation for the prediction of soot emission during flaring

  • Anan Wang
  • Helen H. Lou
  • Daniel Chen
  • Anfeng Yu
  • Wenyi Dang
  • Xianchang Li
  • Christopher Martin
  • Vijaya Damodara
  • Ajit Patki
Review Article


Industrial Flares are important safety devices to burn off the unwanted gas during process startup, shutdown, or upset. However, flaring, especially the associated smoke, is a symbol of emissions from refineries, oil gas fields, and chemical processing plants. How to simultaneously achieve high combustion efficiency (CE) and low soot emission is an important issue. Soot emissions are influenced by many factors. Flare operators tend to over-steam or over-air to suppress smoke, which results in low CE. How to achieve optimal flare performance remains a question to the industry and the regulatory agencies. In this paper, regulations in the US regarding flaring were reviewed. In order to determine the optimal operating window for the flare, different combustion mechanisms related to soot emissions were summarized. A new combustion mechanism (Vsoot) for predicting soot emissions was developed and validated against experimental data. Computational fluid dynamic (CFD) models combined with Vsoot combustion mechanism were developed to simulate the flaring events. It was observed that simulation results agree well with experimental data.


flare soot emission combustion mechanism CFD simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bond T C, Doherty S J, Fahey D W, Forster P M, Berntsen T, De Angelo B J, Flanner M G, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn P K, Sarofim M C, Schultz M G, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S K, Hopke P K, Jacobson M Z, Kaiser J W, Klimont Z, Lohmann U, Schwarz J P, Shindell D, Storelvmo T, Warren S G, Zender C S. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research, D, Atmospheres, 2013, 118(11): 5380–5552CrossRefGoogle Scholar
  2. 2.
    Elvidge C D, Ziskin D, Baugh K E, Tuttle B T, Ghosh T, Pack D W, Erwin E H, Zhizhin M. A fifteen year record of global natural gas flaring derived from satellite data. Energies, 2009, 2(3): 595–622CrossRefGoogle Scholar
  3. 3.
    U. S. EPA. 2009 Final Report: Integrated Science Assessment for Particulate Matter. 2009Google Scholar
  4. 4.
    United States Government Code of Federal Regulations?Standards of Performance for New Stationary Sources, General Control Device andWork Practice Requirements, 40CFR § 60. 18. Available at: http://edocket.access.gpo. gov/cfr_2009/julqtr/pdf/40cfr60. 18. pdf (accessed in April, 2016)Google Scholar
  5. 5.
    U. S. EPA. 40 CFR Ch. I (7–1–09 Edition), Pt. 60, App. A–4, Meth. 9.: Method 9-Visual determination of the opacity of emissions from stationary sources. Available at: pdf (accessed in April, 2016)Google Scholar
  6. 6.
    U. S. EPA Office of Air Quality Planning and Standards (OAQPS). Parameters for properly designed and operated flares, report for flare review panel, 2012. Available at: pdf (accessed in April, 2016)Google Scholar
  7. 7.
    Fry C R, Coburn J, International R T I. Peer review of “Parameters for properly designed and operated flares”, 2012. Available at: https://www3. epa. gov/airtoxics/flare/2012flarepeerreviewmemo. pdf (accessed in April, 2016)Google Scholar
  8. 8.
    Allen D T, Torres V M. 2010 TCEQ Flare Study Final Report. The University of Texas at Austin, The Center for Energy and Environmental Resources, TCEQ PGA No. 582-8-86245-FY09-04 and Task order No. UTA10-000924-LOAT-RP9, 2011Google Scholar
  9. 9.
    Barlow R S, Frank J H. Summary Twelfth International Workshop Measurement and Computation of Turbulent Flames (TNF12). July 31–August 2, 2014, Pleasanton, California, USAGoogle Scholar
  10. 10.
    Action R. Particular Matler (PM) Pollution. Available at: html (accessed in April, 2016)Google Scholar
  11. 11.
    Stohl A, Klimont Z, Eckhardt S, Kupiainen K, Shevchenko V P, Kopeikin V M, Novigatsky A N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmospheric Chemistry and Physics, 2013, 13(17): 8833–8855CrossRefGoogle Scholar
  12. 12.
    Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Environment. Science and Policy for Sustainable Development, 1988, 40(7): 26CrossRefGoogle Scholar
  13. 13.
    Qin Z, Yang H, Gardiner W C. Measurement and modeling of shock-tube ignition delay for propene. Combustion and Flame, 2001, 124(1-2): 246–254CrossRefGoogle Scholar
  14. 14.
    Wang H. A Comprehensive Kinetic Model of Ethylene and Acetylene Oxidation at High Temperatures. Dissertation for the Doctoral Degree. Delaware: University of Delaware, 1998Google Scholar
  15. 15.
    McDaniel M, Tichenor B A. Flare Efficiency Study. US Environmental Protection Agency, Industrial Environmental Research Laboratory, 1983Google Scholar
  16. 16.
    Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd edition. New Jersey: John Wiley & Sons, 2006Google Scholar
  17. 17.
    Current P M. 2. 5 levels — soot, dust, and smoke in your metro area. Available at: http://www.tceq. (accessed in April, 2016)Google Scholar
  18. 18.
    Fine Particulate Matter National Ambient Air Quality Standards. State Implementation Plan Requirements; Proposed Rule. Available at: (accessed in April, 2016)Google Scholar
  19. 19.
    Kleiveland R N. Modelling of soot formation and oxidation in turbulent diffusion flames. Dissertation for the Doctoral Degree. Trondheim: Norwegian University of Science and Technology, 2005 20. 2013 Emissions Inventory Guidelines. Available at: (accessed in April, 2016)Google Scholar
  20. 21.
    Fact sheet proposed petroleum refinery risk and technology review and new source performance standards. Available at: pdf (accessed in April, 2016)Google Scholar
  21. 22.
    EPA’s strategy for reducing methane and ozone-forming pollution from the oil and natural gas industry. Available at: pdf (accessed in April, 2016)Google Scholar
  22. 23.
    EPA. 40 CFR Parts 60 and 63. Petroleum Refinery Sector Risk and Technology Review and New Source Performance Standards. Available at: (accessed in April, 2016)Google Scholar
  23. 24.
    Guide, ANSYS FLUENT USER. Release 14. 5, ANSYS. Inc., 2012Google Scholar
  24. 25.
    Singh J, Patterson R I A, Kraft M, Wang H. Numerical simulation and sensitivity analysis of detailed soot particle size distribution in laminar premixed ethylene flames. Combustion and Flame, 2006, 145(1-2): 117–127CrossRefGoogle Scholar
  25. 26.
    Zhao B, Yang Z, Johnston M V, Wang H, Wexler A S, Balthasar M, Kraft M. Measurement and numerical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygenargon flame. Combustion and Flame, 2003, 133(1-2): 173–188CrossRefGoogle Scholar
  26. 27.
    Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—A review of chemical reaction pathways. Progress in Energy and Combustion Science, 2000, 26(4-6): 565–608CrossRefGoogle Scholar
  27. 28.
    Frenklach M. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4(11): 2028–2037CrossRefGoogle Scholar
  28. 29.
    Lautenbergera C W, de Ris J L, Dembsey N A, Barnett J R, Baum H R. A simplified model for soot formation and oxidation in CFD simulation of non-premixed hydrocarbon flames. Fire Safety Journal, 2005, 40(2): 141–176CrossRefGoogle Scholar
  29. 30.
    Colket M B, Hall R J, Sangiovanni J J, Seery D J. The Determination of Rate-Limiting Steps during Soot Formation. No. UTRC89-13, United Technologies Research Center East Hartford CT, 1989, C-2–C-23Google Scholar
  30. 31.
    Frenklach M, Clary D W, Gardiner W C, Stein S E. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Symposium (International) on Combustion, 1985, 20(1): 887–901CrossRefGoogle Scholar
  31. 32.
    Frenklach M, Clary D W, Gardiner W C, Stein S E. Effect of fuel structure on pathways to soot. Symposium (International) on Combustion, 1988, 21(1): 1067–1076CrossRefGoogle Scholar
  32. 33.
    Melius C F, Colvin M E, Marinov N M, Pit W J, Senkan S M. Reaction mechanisms in aromatic hydrocarbon formation involving the C5H5 cyclopentadienyl moiety. Symposium (International) on Combustion, 1996, 26(1): 685–692CrossRefGoogle Scholar
  33. 34.
    Frenklach M. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 2002, 4(11): 2028–2037CrossRefGoogle Scholar
  34. 35.
    Winans R E, Tomczyk N A, Hunt J E, Solum M S, Pugmire R J, Jiang Y J, Fletcher T H. Model compound study of the pathways for aromatic hydrocarbon formation in soot. Energy & Fuels, 2007, 21(5): 2584–2593CrossRefGoogle Scholar
  35. 36.
    Fenklach M, Wang H. Aromatics growth beyond the first ring and the nucleation of soot particles. Divsion of Fuel Chemistry, 1991, 36: 1509Google Scholar
  36. 37.
    Miller J A, Kee R J, Westbrook C K. Chemical kinetics and combustion modeling. Annual Review of Physical Chemistry, 1990, 41(1): 345–387CrossRefGoogle Scholar
  37. 38.
    Miller J A, Melius C F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combustion and Flame, 1992, 91(1): 21–39CrossRefGoogle Scholar
  38. 39.
    Alexiou A, Williams A, Abdalla A Y. A shock-tube investigation of soot formation form toluene/methanol mixtures. In abstracts of papers of the American Chemical Society. Washington, DC: American Chemical Society, 1991, 202, 113Google Scholar
  39. 40.
    Lou H H, Martin C B, Chen D, Li X, Li K, Vaid H, Kumar A T, Singh K D, Bean D P. A reduced reaction mechanism for the simulation in ethylene flare combustion. Clean Technologies and Environmental Policy, 2012, 14(2): 229–239CrossRefGoogle Scholar
  40. 41.
    Wang H, You X Q, Joshi A V, Davis S G, Laskin A, Egolfopoulos F, Law C K. USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds. (accessed in May, 2007)Google Scholar
  41. 42.
    Davis S G, Law C K. Determination of and fuel structure effects on Laminar flame speeds of C1 to C8 hydrocarbons. Combustion Science and Technology, 1998, 140(1-6): 427–449CrossRefGoogle Scholar
  42. 43.
    Vagelopoulos C M, Egolfopoulos F N, Law C K. Further considerations on the determination of Laminar flame speeds with the counterflow twin-flame technique. Symposium (International) on Combustion, 1994, 25(1): 1341–1347CrossRefGoogle Scholar
  43. 44.
    Zhu D L, Jomaas G, Zheng X L, Law C K. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2-C3 hydrocarbons at atmospheric and elevated pressures. Proceedings of the Combustion Institute, 2005, 30(1): 193–200CrossRefGoogle Scholar
  44. 45.
    Heghes C I. C1-C4 Hydrocarbon oxidation mechanism. Dissertation for the Doctotal Degree. Heidelberg: Ruprecht-Karls-Universität, 2006Google Scholar
  45. 46.
    Qin Z, Yang H, Gardiner W C Jr. Measurement and modeling of shock-tube ignition delay for propene. Combustion and Flame, 2001, 124(1-2): 246–254CrossRefGoogle Scholar
  46. 47.
    Ungut A, James H. Autoignition of gaseous fuel-air mixtures near a hot surface. Institution of Chemical Engineers, 1999, 148: 487–502Google Scholar
  47. 48.
    Law C K, Makino A, Lu T F. On the off-stoichiometric peaking of adiabatic flame temperature. Combustion and Flame, 2006, 145(4): 808–819CrossRefGoogle Scholar
  48. 49.
    Fluent A. 14. 5 Theory Guide. Canonsburg, PA: ANSYS Inc. 2012Google Scholar
  49. 50.
    Fenimore C P, Jones G W. Oxidation of soot by hydroxyl radicals. Journal of Physical Chemistry, 1967, 71(3): 593–597CrossRefGoogle Scholar
  50. 51.
    Brookes S J, Moss J B. Prediction of soot and thermal radiation in confined turbulent jet diffusion flames. Combustion and Flame, 1999, 116(4): 486–503CrossRefGoogle Scholar
  51. 52.
    Tesner P A, Snegiriova T D, Knorre V G. Kinetics of dispersed carbon formation. Combustion and Flame, 1971, 17(2): 253–260CrossRefGoogle Scholar
  52. 53.
    Hall R J, Smooke M D, Colket M B. Physical and chemical Aspects of Combustion. New York: Gordon and Breach, 1997Google Scholar
  53. 54.
    Lindstedt R P. IUTAM Conference on Aerothermo-Chemistry in Combustors. Taiwan: IUTAM, 1991, 145–146Google Scholar
  54. 55.
    McDaniel M, Tichenor B A. Flare efficiency study. Washington: US Environmental Protection Agency, Industrial Environmental Research Laboratory, 1983, 40–49Google Scholar
  55. 56.
    Singh D K, Gangadharan P, Dabade T, Shinde V, Chen D, Lou H H, Richmond P C, Li X. Parametric study of ethylene flare operations using numerical simulation. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 211–228CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anan Wang
    • 1
  • Helen H. Lou
    • 1
  • Daniel Chen
    • 1
  • Anfeng Yu
    • 2
  • Wenyi Dang
    • 2
  • Xianchang Li
    • 3
  • Christopher Martin
    • 4
  • Vijaya Damodara
    • 1
  • Ajit Patki
    • 3
  1. 1.Dan F. Smith Department of Chemical EngineeringLamar UniversityBeaumontUSA
  2. 2.SINOPEC Safety Engineering InstituteQingdaoChina
  3. 3.Department of Mechanical EngineeringLamar UniversityBeaumontUSA
  4. 4.Department of ChemistryLamar UniversityBeaumontUSA

Personalised recommendations