Skip to main content
Log in

Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Two series of 5-iodo-1,2,3-triazole derivatives containing azobenzene group(s) were synthesized and their gelling properties were tested. Those containing two azobenzene groups (B series) have better gelation performance than those containing one azobenzene group (A series). The microstructure of organogels and the driving force of gelation were investigated by scanning electron microscopy and 1H NMR, respectively. It was found that π-π stacking, van der Waals interaction, and dipole-dipole interaction were the main forces of gelation. All the tested organogels are photoresponsive and those from B series are smarter than that from A series. Henry δp-δh diagrams of compounds A1, A2, and B2 were constructed on the basis of their gelation performance and the Hansen solubility parameters of related solvents. The constructed Henry δp-δh diagrams can be used to estimate the behavior of three compounds in any untested solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher M B, von Klitzing R. Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent. Physical Chemistry Chemical Physics, 2012, 14(27): 9594–9600

    Article  CAS  PubMed  Google Scholar 

  2. Jiang H L, Zhu Y H, Chen C, Shen J H, Bao H, Peng L M, Yang X L, Li C Z, New J. Photonic crystal pH and metalcation. New Journal of Chemistry, 2012, 36(4): 1051–1056

    Article  CAS  Google Scholar 

  3. Sugiyasu K, Fujita N, Shinkai S. Photochemical processes visiblelight-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie International Edition, 2004, 43(10): 1229–1233

    Article  CAS  PubMed  Google Scholar 

  4. Vintiloiu A, Leroux J C. Organogels and their use in drug delivery—A review. Journal of Controlled Release, 2008, 125(3): 179–192

    Article  CAS  PubMed  Google Scholar 

  5. Sagiri S S, Singh V K, Banerjee I, Pramanik K, Basak P, Pal K. Core-shell-type organogel-alginate hybrid microparticles: A controlled delivery vehicle. Chemical Engineering Journal, 2015, 264: 134–145

    Article  CAS  Google Scholar 

  6. Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S. Quasi-solid-state dyesensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. Journal of Physical Chemistry B, 2001, 105(51): 12809–12815

    Article  CAS  Google Scholar 

  7. Hirst A R, Smith D K. Solvent effects on supramolecular gel-phase materials: Two-component dendritic gel. Langmuir, 2004, 20(25): 10851–10857

    Article  CAS  PubMed  Google Scholar 

  8. Bielejewski M, Lapinski A, Luboradzki R, Tritt-Goc J. Solvent effect on 1, 2-O-(1-ethylpropylidene) -alpha-D-glucofuranose organogel properties. Langmuir, 2009, 25(14): 8274–8279

    Article  CAS  PubMed  Google Scholar 

  9. Zhu G Y, Jonathan S D. Solvent effect on organogel formation by low molecular weight molecules. Chemistry of Materials, 2006, 18(25): 5988–5995

    Article  CAS  Google Scholar 

  10. Lindvig T, Michelsen M L, Kontogeorgis G M. A Flory-Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 2002, 203(1-2): 247–260

    Article  CAS  Google Scholar 

  11. Lan Y, Corradini M G, Liu X, May T E, Borondics F, Weiss R G, Rogers M A. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1, 3:2, 4-dibenzylidene sorbitol as the gelator. Langmuir, 2014, 30(47): 14128–14142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang Y D, Yuan Y Q, Tu W, Zhang Y, Zhang M J, Qu H M. Preparation of efficient organogelators based on pyrazine-2, 5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230

    Article  CAS  Google Scholar 

  13. Bhalla V, Gupta A, Kumar M, Rao D S S, Prasad S K. Selfassembled pentacenequinone derivative for trace detection of picric acid. ACS Applied Materials & Interfaces, 2013, 5(3): 672–679

    Article  CAS  Google Scholar 

  14. Dong S, Zheng B, Wang F, Huang F. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. Accounts of Chemical Research, 2014, 47: 1982–1994

    Article  CAS  PubMed  Google Scholar 

  15. Doran S, Yilmaz G, Yagci Y. Tandem photoinduced cationic polymerization and CuAAC for macromolecular synthesis. Macromolecules, 2015, 48: 7446–7452

    Article  CAS  Google Scholar 

  16. Huang Y D, Zhang Y, Yuan Y Y, Cao W W. Organogelators based on iodo 1, 2, 3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14): 2124–2133

    Article  CAS  Google Scholar 

  17. Beharry A A, Woolley G A. Azobenzene photoswitches for biomolecules. Chemical Society Reviews, 2011, 40(8): 4422–4437

    Article  CAS  PubMed  Google Scholar 

  18. Pei X W, Fernandes A, Mathy B, Laloyaux X, Nysten B, Riant O, Jonas A M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir, 2011, 27(15): 9403–9412

    Article  CAS  PubMed  Google Scholar 

  19. Petr M, Hammond P T. Room temperature rapid photoresponsive azobenzene side chain liquid crystal polymer. Macromolecules, 2011, 44(22): 8880–8885

    Article  CAS  Google Scholar 

  20. Yuan T, Dong J, Han G, Wang G. Polymer nanoparticles selfassembled from photo-, pH-and thermo-responsive azobenzene functionalized PDMAEMA. RSC Advances, 2016, 6(13): 10904–10911

    Article  CAS  Google Scholar 

  21. Matthieu R, Laurent B. Organogel formation rationalized by Hansen solubility parameters. Chemical Communications, 2011, 47(29): 8271–8273

    Article  CAS  Google Scholar 

  22. Hansen C M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed. Boca Raton: CRC Press, 2007

    Book  Google Scholar 

  23. Fan D L, Zhai Y, Zhang Y, Tu W, Huang Y D. Synthesis and properties of photoresponsive organogels based on azobenzene derivatives. Chemical Journal of Chinese Universities, 2014, 35(11): 2447–2454

    CAS  Google Scholar 

  24. Liu Z X, Feng, Yan Z C, He Y M, Lui C Y, Fan Q H. Multistimuli responsive dendritic organogels based on azobenzene-containing poly(aryl ether) dendron. Chemistry of Materials, 2012, 24(19): 3751–3757

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Huang, Y., Fan, D. et al. Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups. Front. Chem. Sci. Eng. 10, 552–561 (2016). https://doi.org/10.1007/s11705-016-1589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1589-8

Keywords

Navigation