Advertisement

Frontiers of Chemical Science and Engineering

, Volume 10, Issue 4, pp 552–561 | Cite as

Synthesis and properties of novel organogelators functionalized with 5-iodo-1,2,3-triazole and azobenzene groups

  • Ziyan Li
  • Yaodong Huang
  • Dongli Fan
  • Huimin Li
  • Shuxue Liu
  • Luyuan Wang
Research Article

Abstract

Two series of 5-iodo-1,2,3-triazole derivatives containing azobenzene group(s) were synthesized and their gelling properties were tested. Those containing two azobenzene groups (B series) have better gelation performance than those containing one azobenzene group (A series). The microstructure of organogels and the driving force of gelation were investigated by scanning electron microscopy and 1H NMR, respectively. It was found that π-π stacking, van der Waals interaction, and dipole-dipole interaction were the main forces of gelation. All the tested organogels are photoresponsive and those from B series are smarter than that from A series. Henry δp-δh diagrams of compounds A1, A2, and B2 were constructed on the basis of their gelation performance and the Hansen solubility parameters of related solvents. The constructed Henry δp-δh diagrams can be used to estimate the behavior of three compounds in any untested solvent.

Keywords

iodo triazole azobenzene photoresponsive organogel gelator-solvent effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gawlitza K, Wu C, Georgieva R, Wang D, Ansorge-Schumacher M B, von Klitzing R. Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent. Physical Chemistry Chemical Physics, 2012, 14(27): 9594–9600CrossRefGoogle Scholar
  2. 2.
    Jiang H L, Zhu Y H, Chen C, Shen J H, Bao H, Peng L M, Yang X L, Li C Z, New J. Photonic crystal pH and metalcation. New Journal of Chemistry, 2012, 36(4): 1051–1056CrossRefGoogle Scholar
  3. 3.
    Sugiyasu K, Fujita N, Shinkai S. Photochemical processes visiblelight-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie International Edition, 2004, 43(10): 1229–1233CrossRefGoogle Scholar
  4. 4.
    Vintiloiu A, Leroux J C. Organogels and their use in drug delivery—A review. Journal of Controlled Release, 2008, 125(3): 179–192CrossRefGoogle Scholar
  5. 5.
    Sagiri S S, Singh V K, Banerjee I, Pramanik K, Basak P, Pal K. Core-shell-type organogel-alginate hybrid microparticles: A controlled delivery vehicle. Chemical Engineering Journal, 2015, 264: 134–145CrossRefGoogle Scholar
  6. 6.
    Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S. Quasi-solid-state dyesensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine. Journal of Physical Chemistry B, 2001, 105(51): 12809–12815CrossRefGoogle Scholar
  7. 7.
    Hirst A R, Smith D K. Solvent effects on supramolecular gel-phase materials: Two-component dendritic gel. Langmuir, 2004, 20(25): 10851–10857CrossRefGoogle Scholar
  8. 8.
    Bielejewski M, Lapinski A, Luboradzki R, Tritt-Goc J. Solvent effect on 1, 2-O-(1-ethylpropylidene) -alpha-D-glucofuranose organogel properties. Langmuir, 2009, 25(14): 8274–8279CrossRefGoogle Scholar
  9. 9.
    Zhu G Y, Jonathan S D. Solvent effect on organogel formation by low molecular weight molecules. Chemistry of Materials, 2006, 18(25): 5988–5995CrossRefGoogle Scholar
  10. 10.
    Lindvig T, Michelsen M L, Kontogeorgis G M. A Flory-Huggins model based on the Hansen solubility parameters. Fluid Phase Equilibria, 2002, 203(1-2): 247–260CrossRefGoogle Scholar
  11. 11.
    Lan Y, Corradini M G, Liu X, May T E, Borondics F, Weiss R G, Rogers M A. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1, 3:2, 4-dibenzylidene sorbitol as the gelator. Langmuir, 2014, 30(47): 14128–14142CrossRefGoogle Scholar
  12. 12.
    Huang Y D, Yuan Y Q, Tu W, Zhang Y, Zhang M J, Qu H M. Preparation of efficient organogelators based on pyrazine-2, 5-dicarboxylic acid showing room temperature mesophase. Tetrahedron, 2015, 71(21): 3221–3230CrossRefGoogle Scholar
  13. 13.
    Bhalla V, Gupta A, Kumar M, Rao D S S, Prasad S K. Selfassembled pentacenequinone derivative for trace detection of picric acid. ACS Applied Materials & Interfaces, 2013, 5(3): 672–679CrossRefGoogle Scholar
  14. 14.
    Dong S, Zheng B, Wang F, Huang F. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs. Accounts of Chemical Research, 2014, 47: 1982–1994CrossRefGoogle Scholar
  15. 15.
    Doran S, Yilmaz G, Yagci Y. Tandem photoinduced cationic polymerization and CuAAC for macromolecular synthesis. Macromolecules, 2015, 48: 7446–7452CrossRefGoogle Scholar
  16. 16.
    Huang Y D, Zhang Y, Yuan Y Y, Cao W W. Organogelators based on iodo 1, 2, 3-triazole functionalized with coumarin: Properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14): 2124–2133CrossRefGoogle Scholar
  17. 17.
    Beharry A A, Woolley G A. Azobenzene photoswitches for biomolecules. Chemical Society Reviews, 2011, 40(8): 4422–4437CrossRefGoogle Scholar
  18. 18.
    Pei X W, Fernandes A, Mathy B, Laloyaux X, Nysten B, Riant O, Jonas A M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir, 2011, 27(15): 9403–9412CrossRefGoogle Scholar
  19. 19.
    Petr M, Hammond P T. Room temperature rapid photoresponsive azobenzene side chain liquid crystal polymer. Macromolecules, 2011, 44(22): 8880–8885CrossRefGoogle Scholar
  20. 20.
    Yuan T, Dong J, Han G, Wang G. Polymer nanoparticles selfassembled from photo-, pH-and thermo-responsive azobenzene functionalized PDMAEMA. RSC Advances, 2016, 6(13): 10904–10911CrossRefGoogle Scholar
  21. 21.
    Matthieu R, Laurent B. Organogel formation rationalized by Hansen solubility parameters. Chemical Communications, 2011, 47(29): 8271–8273CrossRefGoogle Scholar
  22. 22.
    Hansen C M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed. Boca Raton: CRC Press, 2007CrossRefGoogle Scholar
  23. 23.
    Fan D L, Zhai Y, Zhang Y, Tu W, Huang Y D. Synthesis and properties of photoresponsive organogels based on azobenzene derivatives. Chemical Journal of Chinese Universities, 2014, 35(11): 2447–2454Google Scholar
  24. 24.
    Liu Z X, Feng, Yan Z C, He Y M, Lui C Y, Fan Q H. Multistimuli responsive dendritic organogels based on azobenzene-containing poly(aryl ether) dendron. Chemistry of Materials, 2012, 24(19): 3751–3757CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ziyan Li
    • 1
  • Yaodong Huang
    • 1
  • Dongli Fan
    • 1
  • Huimin Li
    • 1
  • Shuxue Liu
    • 1
  • Luyuan Wang
    • 1
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations