Frontiers of Chemical Science and Engineering

, Volume 10, Issue 4, pp 562–574 | Cite as

Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate

  • Baicang Liu
  • Chen Chen
  • Pingju Zhao
  • Tong Li
  • Caihong Liu
  • Qingyuan Wang
  • Yongsheng Chen
  • John Crittenden
Research Article


To advance commercial application of forward osmosis (FO), we investigated the effects of two additives on the performance of polysulfone (PSf) based FO membranes: one is poly(ethylene glycol) (PEG), and another is PSf grafted with PEG methyl ether methacrylate (PSf-g-PEGMA). PSf blended with PEG or PSf-g-PEGMA was used to form a substrate layer, and then polyamide was formed on a support layer by interfacial polymerization. In this study, NaCl (1 mol∙L–1) and deionized water were used as the draw solution and the feed solution, respectively. With the increase of PEG content from 0 to 15 wt-%, FO water flux declined by 23.4% to 59.3% compared to a PSf TFC FO membrane. With the increase of PSf-g-PEGMA from 0 to 15 wt-%, the membrane flux showed almost no change at first and then declined by about 52.0% and 50.4%. The PSf with 5 wt-% PSf-g-PEGMA FO membrane showed a higher pure water flux of 8.74 L∙m–2∙h–1 than the commercial HTI membranes (6–8 L∙m–2∙h–1) under the FO mode. Our study suggests that hydrophobic interface is very important for the formation of polyamide, and a small amount of PSfg-PEGMA can maintain a good condition for the formation of polyamide and reduce internal concentration polarization.


thin-film composite forward osmosis amphiphilic copolymer interfacial polymerization poly(ethylene glycol) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cath T Y, Childress A E, Elimelech M. Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 2006, 281(1-2): 70–87CrossRefGoogle Scholar
  2. 2.
    Lee S, Boo C, Elimelech M, Hong S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). Journal of Membrane Science, 2010, 365(1-2): 34–39CrossRefGoogle Scholar
  3. 3.
    Mi B, Elimelech M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. Journal of Membrane Science, 2010, 348(1-2): 337–345CrossRefGoogle Scholar
  4. 4.
    Mi B, Elimelech M. Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms. Environmental Science & Technology, 2010, 44(6): 2022–2028CrossRefGoogle Scholar
  5. 5.
    Mi B, Elimelech M. Silica scaling and scaling reversibility in forward osmosis. Desalination, 2013, 312: 75–81CrossRefGoogle Scholar
  6. 6.
    Shaffer D L, Yip N Y, Gilron J, Elimelech M. Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. Journal of Membrane Science, 2012, 415: 1–8CrossRefGoogle Scholar
  7. 7.
    Su J, Chung T S, Helmer B J, de Wit J S. Enhanced double-skinned FO membranes with inner dense layer for wastewater treatment and macromolecule recycle using sucrose as draw solute. Journal of Membrane Science, 2012, 396: 92–100CrossRefGoogle Scholar
  8. 8.
    Ge Q, Wang P, Wan C, Chung T S. Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment. Environmental Science & Technology, 2012, 46(11): 6236–6243CrossRefGoogle Scholar
  9. 9.
    Petrotos K B, Quantick P, Petropakis H. A study of the direct osmotic concentration of tomato juice in tubular membrane-module configuration. I. The effect of certain basic process parameters on the process performance. Journal of Membrane Science, 1998, 150(1): 99–110Google Scholar
  10. 10.
    Nayak C A, Rastogi N K. Forward osmosis for the concentration of anthocyanin from Garcinia indica Choisy. Separation and Purification Technology, 2010, 71(2): 144–151CrossRefGoogle Scholar
  11. 11.
    She Q, Jin X, Tang C Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. Journal of Membrane Science, 2012, 401: 262–273CrossRefGoogle Scholar
  12. 12.
    Chou S, Wang R, Shi L, She Q, Tang C, Fane A G. Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density. Journal of Membrane Science, 2012, 389: 25–33CrossRefGoogle Scholar
  13. 13.
    Yip N Y, Tiraferri A, PhillipWA, Schiffrnan J D, Hoover L A, Kim Y C, Elimelech M. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Environmental Science & Technology, 2011, 45(10): 4360–4369CrossRefGoogle Scholar
  14. 14.
    Yip N Y, Elimelech M. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 2011, 45(23): 10273–10282CrossRefGoogle Scholar
  15. 15.
    Abdallah H, El-Gendi A, Khedr M, El-Zanati E. Hydrophobic polyethersulfone porous membranes for membrane distillation. Frontiers of Chemical Science and Engineering, 2015, 9(1): 84–93CrossRefGoogle Scholar
  16. 16.
    Xie M, Nghiem L D, Price W E, Elimelech M. A forward osmosismembrane distillation hybrid process for direct sewer mining: System performance and limitations. Environmental Science & Technology, 2013, 47(23): 13486–13493CrossRefGoogle Scholar
  17. 17.
    Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science, 2011, 375(1-2): 172–181CrossRefGoogle Scholar
  18. 18.
    Phuntsho S, Shon H K, Majeed T, El Saliby I, Vigneswaran S, Kandasamy J, Hong S, Lee S. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination. Environmental Science & Technology, 2012, 46(8): 4567–4575CrossRefGoogle Scholar
  19. 19.
    Sukitpaneenit P, Chung T S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environmental Science & Technology, 2012, 46(13): 7358–7365CrossRefGoogle Scholar
  20. 20.
    Wang R, Shi L, Tang C Y, Chou S, Qiu C, Fane A G. Characterization of novel forward osmosis hollow fiber membranes. Journal of Membrane Science, 2010, 355(1-2): 158–167CrossRefGoogle Scholar
  21. 21.
    Zhao S, Zou L, Tang C Y, Mulcahy D. Recent developments in forward osmosis: Opportunities and challenges. Journal of Membrane Science, 2012, 396: 1–21CrossRefGoogle Scholar
  22. 22.
    Tiraferri A, Yip N Y, Phillip W A, Schiffman J D, Elimelech M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. Journal of Membrane Science, 2011, 367(1-2): 340–352CrossRefGoogle Scholar
  23. 23.
    McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. Journal of Membrane Science, 2008, 318(1-2): 458–466CrossRefGoogle Scholar
  24. 24.
    Ghosh A K, Hoek E M V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. Journal of Membrane Science, 2009, 336(1-2): 140–148CrossRefGoogle Scholar
  25. 25.
    Widjojo N, Chung T S, Weber M, Maletzko C, Warzelhan V. The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes. Journal of Membrane Science, 2011, 383(1-2): 214–223CrossRefGoogle Scholar
  26. 26.
    Zhong P, Fu X, Chung T S, Weber M, Maletzko C. Development of thin-film composite forward osmosis hollow fiber membranes using direct sulfonated polyphenylenesulfone (sPPSU) as membrane substrates. Environmental Science & Technology, 2013, 47(13): 7430–7436CrossRefGoogle Scholar
  27. 27.
    Chakrabarty B, Ghoshal A K, Purkait M K. Effect of molecular weight of PEG on membrane morphology and transport properties. Journal of Membrane Science, 2008, 309(1-2): 209–221CrossRefGoogle Scholar
  28. 28.
    Liu B, Chen C, Li T, Crittenden J, Chen Y. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445: 66–75CrossRefGoogle Scholar
  29. 29.
    Nhu-Ngoc B, McCutcheon J R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environmental Science & Technology, 2013, 47(3): 1761–1769CrossRefGoogle Scholar
  30. 30.
    Park J Y, Acar M H, Akthakul A, Kuhlman W, Mayes A M. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27(6): 856–865CrossRefGoogle Scholar
  31. 31.
    Ghosh A K, Jeong B H, Huang X, Hoek E M V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. Journal of Membrane Science, 2008, 311(1-2): 34–45CrossRefGoogle Scholar
  32. 32.
    Cadotte J E. Interfacially synthesized reverse osmosis membrane. US Patent, 4277344, 1981Google Scholar
  33. 33.
    Yip N Y, Tiraferri A, Phillip W A, Schiffman J D, Elimelech M. High performance thin-film composite forward osmosis membrane. Environmental Science & Technology, 2010, 44(10): 3812–3818CrossRefGoogle Scholar
  34. 34.
    Phillip W A, Yong J S, Elimelech M. Reverse draw solute permeation in forward osmosis: Modeling and experiments. Environmental Science & Technology, 2010, 44(13): 5170–5176CrossRefGoogle Scholar
  35. 35.
    Cath T Y, Elimelech M, McCutcheon J R, McGinnis R L, Achilli A, Anastasio D, Brady A R, Childress A E, Farr I V, Hancock N T, Lampi J, Nghiem L D, Xie M, Yip N Y. Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination, 2013, 312: 31–38CrossRefGoogle Scholar
  36. 36.
    Boom R M, Wienk I M, Vandenboomgaard T, Smolders C A. Microstructures in phase inversion membranes.2. The role of a polymeric additive. Journal of Membrane Science, 1992, 73(2-3): 277–292CrossRefGoogle Scholar
  37. 37.
    Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additives on properties and performance. Desalination, 2012, 307: 26–33CrossRefGoogle Scholar
  38. 38.
    Wei J, Qiu C, Tang C Y, Wang R, Fane A G. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. Journal of Membrane Science, 2011, 372(1-2): 292–302CrossRefGoogle Scholar
  39. 39.
    Huang L, McCutcheon J R. Impact of support layer pore size on performance of thin film composite membranes for forward osmosis. Journal of Membrane Science, 2015, 483: 25–33CrossRefGoogle Scholar
  40. 40.
    Mi Y F, Zhao Q, Ji Y L, An Q F, Gao C J. A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. Journal of Membrane Science, 2015, 490: 311–320CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Baicang Liu
    • 1
    • 2
  • Chen Chen
    • 3
  • Pingju Zhao
    • 1
    • 2
  • Tong Li
    • 4
  • Caihong Liu
    • 5
  • Qingyuan Wang
    • 1
    • 2
  • Yongsheng Chen
    • 6
  • John Crittenden
    • 6
  1. 1.College of Architecture and EnvironmentSichuan UniversityChengduChina
  2. 2.Institute of New Energy and Low Carbon TechnologySichuan UniversityChengduChina
  3. 3.Litree Purifying Technology Co., LtdHaikouChina
  4. 4.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  5. 5.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina
  6. 6.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations