Frontiers of Computer Science

, Volume 12, Issue 2, pp 245–263 | Cite as

Online clustering of streaming trajectories

  • Jiali Mao
  • Qiuge Song
  • Cheqing Jin
  • Zhigang Zhang
  • Aoying Zhou
Research Article
  • 19 Downloads

Abstract

With the increasing availability of modern mobile devices and location acquisition technologies, massive trajectory data of moving objects are collected continuously in a streaming manner. Clustering streaming trajectories facilitates finding the representative paths or common moving trends shared by different objects in real time. Although data stream clustering has been studied extensively in the past decade, little effort has been devoted to dealing with streaming trajectories. The main challenge lies in the strict space and time complexities of processing the continuously arriving trajectory data, combined with the difficulty of concept drift. To address this issue, we present two novel synopsis structures to extract the clustering characteristics of trajectories, and develop an incremental algorithm for the online clustering of streaming trajectories (called OCluST). It contains a micro-clustering component to cluster and summarize the most recent sets of trajectory line segments at each time instant, and a macro-clustering component to build large macro-clusters based on micro-clusters over a specified time horizon. Finally, we conduct extensive experiments on four real data sets to evaluate the effectiveness and efficiency of OCluST, and compare it with other congeneric algorithms. Experimental results show that OCluST can achieve superior performance in clustering streaming trajectories.

Keywords

streaming trajectory synopsis data structure concept drift sliding window 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Our research was supported by the National Key Research and Development Program of China (2016YFB1000905), the National Natural Science Foundation of China (NSFC) (Grant Nos. 61702423, 61370101, 61532021, U1501252, U1401256 and 61402180), Natural Science Foundation of the Education Department of Sichuan Province (17ZA0381 and 13ZA0015), China West Normal University Special Foundation of National Programme Cultivation (16C005), and Meritocracy Research Funds of China West Normal University (17YC158).

Supplementary material

11704_2017_6325_MOESM1_ESM.ppt (587 kb)
Supplementary material, approximately 587 KB.

References

  1. 1.
    Pan B, Zheng Y, Wilkie D, Shahabi C. Crowd sensing of traffic anomalies based on human mobility and social media. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2013, 334–343Google Scholar
  2. 2.
    Liu H P, Jin C Q, Zhou A Y. Popular route planning with travel cost estimation. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2016, 403–418CrossRefGoogle Scholar
  3. 3.
    Chen C, Chen X, Wang Z, Wang Y S, Zhang D Q. ScenicPlanner: planning scenic travel routes leveraging heterogeneous user-generated digital footprints. Frontiers of Computer Science, 2017, 11(1): 61–74CrossRefGoogle Scholar
  4. 4.
    Duan X Y, Jin C Q, Wang X L, Zhou A Y, Yue K. Real-time personalized taxi-sharing. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2016, 451–465CrossRefGoogle Scholar
  5. 5.
    Wu H, Tu C C, Sun W W, Zheng B H, Su H, Wang W. GLUE: a parameter-tuning- free map updating system. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015, 683–692Google Scholar
  6. 6.
    Lee J G, Han J W, Whang K Y. Trajectory clustering: a partition-andgroup framework. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2007, 593–604Google Scholar
  7. 7.
    Ester M, Kriegel H P, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 1996, 226–231Google Scholar
  8. 8.
    Gaffney S, Smyth P. Trajectory clustering with mixtures of regression models. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1999, 63–72Google Scholar
  9. 9.
    Wang W, Yang J, Muntz R R. STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases. 1997, 186–195Google Scholar
  10. 10.
    Jensen C S, Lin D, Ooi B C. Continuous clustering of moving objects. IEEE Transactions on Knowledge & Data Engineering, 2007, 19(9): 1161–1174CrossRefGoogle Scholar
  11. 11.
    Li Y F, Han J W, Yang J. Clustering moving objects. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2004, 617–622Google Scholar
  12. 12.
    Li Z H, Lee J G, Li X L, Han J W. Incremental clustering for trajectories. In: Proceedings of the 15th International Conference on Database Systems for Advanced Applications. 2010, 32–46CrossRefGoogle Scholar
  13. 13.
    Aggarwal C C, Han J W, Wang J Y, Yu P S. A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases. 2003, 81–92Google Scholar
  14. 14.
    Hönle N, Großmann M, Reimann S, Mitschang B. Usability analysis of compression algorithms for position data streams. In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010, 240–249Google Scholar
  15. 15.
    Datar M, Gionis A, Indyk P, Motwani R. Maintaining stream statistics over sliding windows. SIAM Journal on Computing. 2002, 31(6): 635–644MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Chu S, Keogh E J, Hart D M, Pazzani M J. Iterative deepening dynamic time warping for time series. In: Proceedings of the 2nd SIAM International Conference on Data Mining. 2002, 195–212Google Scholar
  17. 17.
    Vlachos M, Gunopulos D, Kollios G. Discovering similar multidimensional trajectories. In: Proceedings of the 18th International Conference on Data Engineering. 2002, 673–684CrossRefGoogle Scholar
  18. 18.
    Chen L, Ng R T. On the marriage of Lp-norms and edit distance. In: Proceedings of the 30th International Conference on Very Large Data Bases. 2004, 792–803Google Scholar
  19. 19.
    Chen L, Özsu M T, Oria V. Robust and fast similarity search for moving object trajectories. In: Proceedings of ACMSIGMOD International Conference on Management of Data. 2005, 491–502Google Scholar
  20. 20.
    Roh G, Hwang S. NNCluster: an efficient clustering algorithm for road network trajectories. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2010, 47–61CrossRefGoogle Scholar
  21. 21.
    Mao J L, Song Q G, Jin C Q, Zhang Z G, Zhou A Y. TSCluWin: trajectory stream clustering over sliding window. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2016, 133–148CrossRefGoogle Scholar
  22. 22.
    Zhang J, Xu J, Liao S S. Aggregating and sampling methods for processing GPS data streams for traffic state estimation. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1629–1641CrossRefGoogle Scholar
  23. 23.
    Castro P S, Zhang D Q, Li S J. Urban traffic modelling and prediction using large scale taxi GPS traces. In: Proceedings of International Conference on Pervasive Computing. 2012, 57–72Google Scholar
  24. 24.
    Lloyd S P. Least squares quantization in PCM. IEEE Transactions on Information Theory, 1982, 28(2): 129–136MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Zhang T, Ramakrishnan R, Livny M. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 1996, 103–114Google Scholar
  26. 26.
    Babcock B, Datar M, Motwani R, O’Callaghan L. Maintaining variance and k-medians over data stream windows. In: Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2003, 234–243Google Scholar
  27. 27.
    Aggarwal C C, Yu P S. A framework for clustering uncertain data streams. In: Proceedings of IEEE International Conference on Data Engineering. 2008, 150–159Google Scholar
  28. 28.
    Zhou A Y, Cao F, Qian W N, Jin C Q. Tracking clusters in evolving data streams over sliding windows. Knowledge and Information Systems, 2008, 15(2): 181–214CrossRefGoogle Scholar
  29. 29.
    Jin C Q, Yu J X, Zhou A Y, Cao F. Efficient clustering of uncertain data streams. Knowledge and Information Systems, 2014, 40(3): 509–539CrossRefGoogle Scholar
  30. 30.
    Won J I, Kim S W, Baek J H, Lee J. Trajectory clustering in road network environment. In: Proceedings of IEEE Symposium on Computational Intelligence and Data Mining. 2009, 299–305Google Scholar
  31. 31.
    Han B, Liu L, Omiecinski E. Road-network aware trajectory clustering: integrating locality, flow, and density. IEEE Transactions on Mobile Computing, 2015, 14(2): 416–429CrossRefGoogle Scholar
  32. 32.
    Lange R, Dürr F, Rothermel K. Efficient real-time trajectory tracking. The VLDB Journal, 2011, 20(5): 671–694CrossRefGoogle Scholar
  33. 33.
    Nehme R V, Rundensteiner E A. SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects. In: Proceedings of the 10th International Conference on Advances in Database Technology. 2006, 1001–1019Google Scholar
  34. 34.
    Sacharidis D, Patroumpas K, Terrovitis M, Kantere V, Potamias M, Mouratidis K, Sellis T. On-line discovery of hot motion paths. In: Proceedings of the 11th International Conference on Extending Database Technology: Advances in Database Technology. 2008, 392–403CrossRefGoogle Scholar
  35. 35.
    Zheng Y, Yuan N J, Zheng K, Shang S. On discovery of gathering patterns from trajectories. In: Proceedings of IEEE International Conference on Data Engineering. 2013, 242–253Google Scholar
  36. 36.
    Tang L A, Zheng Y, Yuan J, Han J W, Leung A, Hung C C, Peng W C. On discovery of traveling companions from streaming trajectories. In: Proceedings of the 28th IEEE International Conference on Data Engineering. 2012, 186–197Google Scholar
  37. 37.
    Li X H, Ceikute V, Jensen C S, Tan K L. Effective online group discovery in trajectory databases. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(12): 2752–2766CrossRefGoogle Scholar
  38. 38.
    Deng Z, Hu Y Y, Zhu M, Huang X H, Du B. A scalable and fast OPTICS for clustering trajectory big data. Cluster Computing, 2015, 18(2): 549–562CrossRefGoogle Scholar
  39. 39.
    Costa G, Manco G, Masciari E. Dealing with trajectory streams by clustering and mathematical transforms. Journal of Intelligent Information Systems, 2014, 42(1): 155–177CrossRefGoogle Scholar
  40. 40.
    Yu Y W, Wang Q, Wang X D, Wang H, He J. Online clustering for trajectory data stream of moving objects. Computer Science & Infor mation Systems, 2013, 10(3): 1293–1317CrossRefGoogle Scholar
  41. 41.
    Jeung H, Yiu M L, Zhou X F, Jensen C S, Shen H T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 2008, 1(1): 1068–1080CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiali Mao
    • 1
    • 2
  • Qiuge Song
    • 1
  • Cheqing Jin
    • 1
  • Zhigang Zhang
    • 1
  • Aoying Zhou
    • 1
  1. 1.School of Data Science and EngineeringEast China Normal UniversityShanghaiChina
  2. 2.School of ComputingChina West Normal UniversityNanchongChina

Personalised recommendations