Frontiers of Computer Science

, Volume 12, Issue 2, pp 351–375 | Cite as

A formal model for plastic human computer interfaces

  • Abdelkrim Chebieb
  • Yamine Ait Ameur
Research Article


The considerable and significant progress achieved in the design and development of new interaction devices between man and machine has enabled the emergence of various powerful and efficient input and/or output devices. Each of these new devices brings specific interaction modes.With the emergence of these devices, new interaction techniques and modes arise and new interaction capabilities are offered. New user interfaces need to be designed or former ones need to evolve. The design of so called plastic user interfaces contributes to handling such evolutions. The key requirement for the design of such a user interface is that the new obtained user interface shall be adapted to the application and have, at least, the same behavior as the previous (adapted) one. This paper proposes to address the problem of user interface evolution due to the introduction of new interaction devices and/or new interaction modes. More, precisely, we are interested by the study of the design process of a user interface resulting from the evolution of a former user interface due to the introduction of new devices and/or new interaction capabilities. We consider that interface behaviors are described by labelled transition systems and comparison between user interfaces is handled by an extended definition of the bi-simulation relationship to compare user interface behaviors when interaction modes are replaced by new ones.


formal modeling and verification ontology based modeling plastic user interfaces adaptive systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11704_2016_5460_MOESM1_ESM.ppt (366 kb)
Supplementary material, approximately 336 KB.


  1. 1.
    Thevenin D, Coutaz J. Plasticity of user interfaces: framework and research agenda. In: Proceedings of INTERACT. 1999, 110–117Google Scholar
  2. 2.
    Coutaz J, Calvary G. HCI and software engineering for user interface plasticity. In: Jacko J A, ed. HCI Handbook: Fundamentals, Evolving Technologies, and Emerging Applications, 3rd ed. Boca Raton, FL: CRC Press, 2012, 1195–1220Google Scholar
  3. 3.
    Navarre D, Palanque P, Basnyat S. A formal approach for user interaction reconfiguration of safety critical interactive systems. In: Proceedings of International Conference on Computer Safety, Reliability, and Security. 2008, 373–386CrossRefGoogle Scholar
  4. 4.
    Calvary G, Coutaz J, Bouillon L, Florins M, Limbourg Q, Marucci L, Paternò F, Santoro C, Souchon N, Thevenin D, Vanderdonckt J. The cameleon reference framework. Deliverable D1 of the Cameleon project, 2002Google Scholar
  5. 5.
    Mori G, Paternò F, Santoro C. Tool support for designing nomadic applications. In: Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003, 141–148Google Scholar
  6. 6.
    Samaan K. Prise en Compte du Modèle d’Interaction dans le Processus de Construction et d’Adaptation d’Applications Interactives. Dissertation for the Doctoral Degree. Lyon: Ecole Centrale de Lyon, 2006Google Scholar
  7. 7.
    Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López- Jaquero V. Usixml: a language supporting multi-path development of user interfaces. Engineering HCI and Interactive Systems, 2005, 134–135Google Scholar
  8. 8.
    Palanque P, Paternò F. Formal Methods in Human-Computer Interaction. New York: Springer-Verlag, 1997Google Scholar
  9. 9.
    Hartson H R, Siochi A C, Hix D. The UAN: a user-oriented representation for direct manipulation interface designs. ACM Transactions on Information Systems (TOIS), 1990, 8(3): 181–203CrossRefGoogle Scholar
  10. 10.
    Rix D, Hartson H. Developping User Interfaces: ensuring Usability Through Product & Process. New York: John Wiley & Sons, inc., 1993zbMATHGoogle Scholar
  11. 11.
    Dix A, Finlay J, Abowd G, Beale R. Human-Computer Interaction. Upper Saddle River: Prentice Hall, 1993zbMATHGoogle Scholar
  12. 12.
    Paternò F, Mancini C, Meniconi S. Concurtasktrees: a diagrammatic notation for specifying task models. In: Proceedings of the IFIP TC13 Interantional Conference on Human-Computer Interaction. 1997, 362–369Google Scholar
  13. 13.
    Paternò F, Santoro C. Integrating model checking and HCI tools to help designers verify user interface properties. In: Palanque P, Paternò F, eds. Interactive Systems Design, Specification, and Verification. Lecture Notes in Computer Science, Vol 1946. Berlin: Springer, 2001, 135–150CrossRefGoogle Scholar
  14. 14.
    Scapin D, Pierret-Golbreich C. Towards a method for task description: MAD. Work with Display Units, 1989, 89: 371–380Google Scholar
  15. 15.
    Scapin D, Bastien J. Analyse des tâches et aide ergonomique à la conception: l’approche mad*. Analyse et conception de l’IHM, 2001, 85–116Google Scholar
  16. 16.
    Sybille C, Dominique S, Patrick G, Mickael B, Francis J. Increasing the expressive power of task analysis: systematic comparison and empirical assessment of tool-supported task models. Interacting with Computers, 2010Google Scholar
  17. 17.
    Chebieb K, Mansour D, Ait-Ameur Y. Analyse et evaluation de propriétés dans les ihm. In: Proceedings of the 7th International Symposium on Programming and Systems. 2001, 241–252Google Scholar
  18. 18.
    Ait Ameur Y, Kamel N. A generic formal specification of fusion of modalities in a multimodal HCI. Building the Information Society, 2004, 415–420CrossRefGoogle Scholar
  19. 19.
    Palanque P, Bastide R. Petri net based design of user-driven interfaces using the interactive cooperative objects formalism. In: Paternó F, eds. Design, Specification and Verification of Interactive Systems. Focus on Computer Graphics. Berlin: Springer, 1994, 383–400Google Scholar
  20. 20.
    Navarre D, Palanque P, Ladry J F, Barboni E. ICOs: a model-based user interface description technique dedicated to interactive systems addressing usability, reliability and scalability. ACM Transactions on Computer-Human Interaction, 2009, 16(4): 18CrossRefGoogle Scholar
  21. 21.
    Paternò F, Mori G, Galiberti R. CTTE: an environment for analysis and development of task models of cooperative applications. In: Proceedings of CHI’ 01 Extended Abstracts on Human Factors in Computing Systems. 2001, 21–22CrossRefGoogle Scholar
  22. 22.
    Ait Ameur Y, Baron M, Kamel N, Mota J M. Encoding a process algebra using the event B method: application to the validation of human-computer interactions. International Journal on Software Tools for Technology Transfer, 2009, 11(3): 239–253CrossRefGoogle Scholar
  23. 23.
    Mohand-Oussaïd L, Aït-Sadoune I, Aït-Ameur Y. Modelling information fission in output multi-modal interactive systems using event-B. In: Proceedings of the 1st International Conference on Model and Data Engineering. 2011, 200–213Google Scholar
  24. 24.
    Duke D, Harrison M D. Event model of human-system interaction. IEEE Software Engineering Journal, 1995, 10(1): 3–10CrossRefGoogle Scholar
  25. 25.
    Brun P. XTL: a temporal logic for the formal development of interactive systems. Formal Methods for Human-Computer Interaction, 1997, 121–139Google Scholar
  26. 26.
    D’Ausbourg B. Using model checking for the automatic validation of user interface systems. In: Proceedings of Eurographics Workshop on Design, Specification, and Verification of Interactive Systems. 1998, 242–260Google Scholar
  27. 27.
    Ait Ameur Y, Kamel N. A generic formal specification of fusion of modalities in a multimodal HCI. In: Jacquart R, eds. IFIP World Computer Science. 2004, 415–420Google Scholar
  28. 28.
    Milner R. A Calculus of Communicating Systems. Secaucus, NJ: Springer-Verlag New York, Inc., 1982zbMATHGoogle Scholar
  29. 29.
    Lotos I S O. A formal description technique based on the temporal ordering of observational behaviour. International Organisation for Standardization-Information Processing Systems—Open Systems Interconnection, Geneva, 1988Google Scholar
  30. 30.
    Dictionary C. Cambridge Dictionaries Online, 2002Google Scholar
  31. 31.
    Vanderdonckt J, Grolaux D, Van Roy P, Limbourg Q, Macq B, Michel B. A design space for context-sensitive user interfaces. In: Proceedings of IASSE, 2005, 207–214Google Scholar
  32. 32.
    Johnson J A, Nardi B A, Zarmer C L, Miller J R. ACE: building interactive graphical applications. Communications of the ACM, 1993, 36(4): 40–55CrossRefGoogle Scholar
  33. 33.
    Kawai S, Aida H, Saito T. Designing interface toolkit with dynamic selectable modality. In: Proceedings of the 2nd Annual ACM Conference on Assistive Technologies. 1996, 72–79CrossRefGoogle Scholar
  34. 34.
    Crease M. A toolkit of resource-sensitive, multimodal widgets. University of Glasgow, 2001Google Scholar
  35. 35.
    Bier E A, Stone M C, Pier K, Buxton W, De Rose T D. Toolglass and magic lenses: the see-through interface. In: Proceedings of the 20th Annual Conference on CGIT. 1993, 73–80Google Scholar
  36. 36.
    Stuerzlinger W, Chapuis O, Phillips D, Roussel N. User interface façades: towards fully adaptable user interfaces. In: Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology. 2006, 309–318Google Scholar
  37. 37.
    Demeure A, Calvary G, Coninx K. Comet(s), a software architecture style and an interactors toolkit for plastic user interfaces. In: Graham T, Palanque P, eds. Interactive Systems. Design, Specification, and Verification. Lecture Notes in Computer Sciences, Vol 5136. 2008, 225–237Google Scholar
  38. 38.
    Jabarin B, Graham T C M. Architectures for widget-level plasticity. In: Proceedings of International Workshop on Interactive Systems. Design, Specification, and Verification of Interactive Systems. 2003, 451–460Google Scholar
  39. 39.
    Stanciulescu A. Methodology for Developing Multimodal User Interfaces of Information Systems. Leuven: Presses univ. de Louvain, 2008Google Scholar
  40. 40.
    Samaan K, Tarpin-Bernard F. The AMF architecture in a multiple user interface generation process. In: Proceedings of Developing User Interfaces with XML. 2004Google Scholar
  41. 41.
    Dery-Pinna A M, Fierstone J, Picard E. Component model and programming: a first step to manage human computer interaction adaptation. In: Proceedings of International Conference on Human-Computer Interaction with Mobile Devices and Services. 2003, 456–460CrossRefGoogle Scholar
  42. 42.
    De Oliveira K M, Bacha F, Mnasser H, Abed M. Transportation ontology definition and application for the content personalization of user interfaces. Expert Systems with Applications, 2013, 40(8): 3145–3159CrossRefGoogle Scholar
  43. 43.
    Sonnenberg J. Service and user interface transfer from nomadic devices to car infotainment systems. In: Proceedings of the 2nd International Conference on Automotive User Interfaces and Interactive Vehicular Applications. 2010, 162–165Google Scholar
  44. 44.
    Dees W. Usability of nomadic user interfaces. In: Jacko J, eds. Human- Computer Interaction. Towards Mobile and Intelligent Interaction Environments Lecture Notes in Computer Science, Vol 6763. Berlin: Springer, 2011, 195–204CrossRefGoogle Scholar
  45. 45.
    Masson D, Demeure A, Calvary G. Examples galleries generated by interactive genetic algorithms. In: Procedings of the 2nd Conference on Creativity and Innovation in Design. 2011, 61–71CrossRefGoogle Scholar
  46. 46.
    Pierre D, Marc D, Philippe R. Ubiquitous widgets: Designing interactions architecture for adaptive mobile applications. In: Proceedings of International Conference on Distributed Computing in Sensor Systems. 2013, 331–336Google Scholar
  47. 47.
    Demeure A. Modèles et outils pour la conception et l’exécution d’Interfaces Homme-Machine Plastiques. Dissertation for the Doctoral Degree. Grenoble: Université Joseph Fourier, 2007Google Scholar
  48. 48.
    Gruber T R. A translation approach to portable ontology specifications. Knowledge Acquisition, 1993, 5(2): 199–220CrossRefGoogle Scholar
  49. 49.
    Jean S, Pierra G, Ait Ameur Y. Domain ontologies: a database-oriented analysis. In: Filipe J, Cordeiro J, Pedrosa V, eds. Information Systems and Technologies. Lecture Notes in Business Information Processing, Vol 1. Berlin: Springer, 2007, 238–254CrossRefGoogle Scholar
  50. 50.
    Demeure A, Calvary G. Le modèle d’évolution en plasticité des interfaces: apport des graphes conceptuels. In: Actes de la 15ème conférence francophone IHM 2003. 2003, 80–87Google Scholar
  51. 51.
    Rekimoto J. Pick-and-drop: a direct manipulation technique for multiple computer environments. In: Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology. 1997, 31–39Google Scholar
  52. 52.
    Constantine L L. Canonical abstract prototypes for abstract visual and interaction design. In: Proceedings of International Workshop on Design, Specification, and Verification of Interactive Systems. 2003, 1–15Google Scholar
  53. 53.
    Milner R. Communication and Concurrency. Upper Saddle River, NJ: Prentice-Hall, Inc., 1989zbMATHGoogle Scholar
  54. 54.
    Chebieb A, Ait-Ameur Y. Formal verification of plastic user interfaces exploiting domain ontologies. In: Proceedings of the 9th International Symposium on Theoretical Aspects of Software Engineering. 2015, 79–86Google Scholar
  55. 55.
    Ait Ameur Y, Ait Sadoune I, Mota J M, Baron M. Validation et vérification formelles de systèmes interactifs multi-modaux fondées sur la preuve. In: Proceedings of the 18th International Conference of the Association Francophone d’Interaction Homme-Machine. 2006, 123–130Google Scholar
  56. 56.
    Buxton W. A three-state model of graphical input. In: Proceeding of Human-Computer Interaction-INTERACT. 1990, 449–456Google Scholar
  57. 57.
    Card S, Mackinlay J D, Robertson G. The design space of input devices. In: Proceedings of the ACM Conference on Human Factors in Computing Systems, Multi-Media. 1990, 117–124Google Scholar
  58. 58.
    Frohlich D. The design space of interfaces. In: Proceeding of the 1st Eurographics Workshop on Multimedia Systems, Interaction and Applications. 1991Google Scholar
  59. 59.
    Dragicevic P, Fekete J D. Support for input adaptability in the icon toolkit. In: Proceedings of the 6th International Conference on Multimodal Interfaces. 2004, 212–219Google Scholar
  60. 60.
    CADP-Team., 2013Google Scholar
  61. 61.
    Ait-Ameur Y, Chebieb A. A formal model to check systems substitutability: an application to interactive systems. Technical Report. 2013Google Scholar
  62. 62.
    Clavel M, Duràn F, Eker S, Lincoln P, Martì-Oliet N, Meseguer J, Quesada J. Maude: specification and programming in rewriting logic. Theoretical Computer Science, 2002, 285(2): 187–243MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Haarslev V, Möller R. Description of the RACER system and its applications. Description Logics, 2001, 49Google Scholar
  64. 64.
    Bijan S E P. Pellet: an owl DL reasoner. In: Proceedings of International Workshop on Description Logics. 2004, 6–8Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science School for Engineers (ESI)AlgiersAlgeria
  2. 2.IRIT-INPT-ENSEEIHTToulouseFrance

Personalised recommendations