Less is more: clinical impact of decreasing pneumoperitoneum pressures during robotic surgery

Abstract

The objective of this study was to investigate the effects of decreasing insufflation pressure during robotic gynecologic surgery. The primary outcomes were patient-reported postoperative pain scores and length of stay. Secondary outcomes include surgical time, blood loss, and intraoperative respiratory parameters. This is a retrospective cohort study of patients undergoing robotic surgery for benign gynecologic conditions by a single minimally invasive surgeon at an academic hospital between 2014 and 2017. Patients were categorized by the maximum insufflation pressure reached during the surgery as either 15, 12, 10, or 8 mmHg. Continuous variables were compared using analysis of variance and χ2 test was used for categorical variables. 598 patients were included in this study with no differences in age, BMI, race, prior abdominal surgeries, or specimen weight between the four cohorts. When comparing cohorts, each decrease in insufflation pressure correlated with a significant decrease in initial pain scores (5.9 vs 5.4 vs 4.4 vs. 3.8, p ≤ 0.001), and hospital length of stay (449 vs 467 vs 351 vs. 317 min, p ≤ 0.001). There were no differences in duration of surgery (p = 0.31) or blood loss (p = 0.09). Lower operating pressures were correlated with significantly lower peak inspiratory pressures (p < 0.001) and tidal volumes (p < 0.001). Surgery performed at lower-pressure pneumoperitoneum (≤ 10 mmHg) is associated with lower postoperative pain scores, shorter length of stay, and improved intraoperative respiratory parameters without increased duration of surgery or blood loss. Operating at lower insufflation pressures is a low-cost, reversible intervention that should be implemented during robotic surgery as it results in the improved pain scores and shorter hospital stays.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zechmeister JR, Pua TL, Boyd LR, Blank SV, Curtin JP, Pothuri B (2015) A prospective comparison of postoperative pain and quality of life in robotic assisted vs conventional laparoscopic gynecologic surgery. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2014.08.003

    Article  PubMed  Google Scholar 

  2. 2.

    Advincula AP, Xu X, Goudeau S IV, Ransom SB (2007) Robot-assisted laparoscopic myomectomy versus abdominal myomectomy: a comparison of short-term surgical outcomes and immediate costs. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2007.06.008

    Article  PubMed  Google Scholar 

  3. 3.

    Martino MA, Berger EA, McFetridge JT, Shubella J, Gosciniak G, Wejkszner T, Kainz GF, Patriarco J, Thomas MB, Boulay R (2014) A comparison of quality outcome measures in patients having a hysterectomy for benign disease: robotic vs. non-robotic approaches. J Minim Invasive Gynecol. https://doi.org/10.1016/j.jmig.2013.10.008

    Article  PubMed  Google Scholar 

  4. 4.

    Obermair A, Janda M, Baker J, Kondalsamy-Chennakesavan S, Brand A, Hogg R, Jobling TW, Land R, Manolitsas T, Nascimento M, Neesham D, Nicklin JL, Oehler MK, Otton G, Perrin L, Salfinger S, Hammond I, Leung Y, Sykes P, Ngan H, Garrett A, Laney M, Ng TY, Tam K, Chan K, Wrede DH, Pather S, Simcock B, Farrell R, Robertson G, Walker G, McCartney A, Gebski V (2012) Improved surgical safety after laparoscopic compared to open surgery for apparent early stage endometrial cancer: Results from a randomised controlled trial. Eur J Cancer. https://doi.org/10.1016/j.ejca.2012.02.055

    Article  PubMed  Google Scholar 

  5. 5.

    Walker JL, Piedmonte MR, Spirtos NM, Eisenkop SM, Schlaerth JB, Mannel RS, Spiegel G, Barakat R, Pearl ML, Sharma SK (2009) Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer: Gynecologic Oncology Group Study LAP2. J Clin Oncol. https://doi.org/10.1200/JCO.2009.22.3248

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kalogera E, Dowdy SC (2016) Enhanced recovery pathway in gynecologic surgery: improving outcomes through evidence-based medicine. Obstet Gynecol Clin N Am. https://doi.org/10.1016/j.ogc.2016.04.006

    Article  Google Scholar 

  7. 7.

    Steinberg AC, Schimpf MO, White AB, Mathews C, Ellington DR, Jeppson P, Crisp C, Aschkenazi SO, Mamik MM, Balk EM, Murphy M (2017) Preemptive analgesia for postoperative hysterectomy pain control: systematic review and clinical practice guidelines. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2017.03.013

    Article  PubMed  Google Scholar 

  8. 8.

    Nelson G, Altman AD, Nick A, Meyer LA, Ramirez PT, Achtari C, Antrobus J, Huang J, Scott M, Wijk L, Acheson N, Ljungqvist O, Dowdy SC (2016) Guidelines for pre- and intra-operative care in gynecologic/oncology surgery: Enhanced Recovery after Surgery (ERAS®) Society recommendations-part I. Gynecol Oncol. https://doi.org/10.1016/j.ygyno.2015.11.015

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Nelson G, Altman AD, Nick A, Meyer LA, Ramirez PT, Achtari C, Antrobus J, Huang J, Scott M, Wijk L, Acheson N, Ljungqvist O, Dowdy SC (2016) Guidelines for postoperative care in gynecologic/oncology surgery: Enhanced Recovery after Surgery (ERAS®) Society recommendations-part II. Gynecol Oncol. https://doi.org/10.1016/j.ygyno.2015.12.019

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Dickson E, Argenta PA, Reichert JA (2012) Results of introducing a rapid recovery program for total abdominal hysterectomy. Gynecol Obstet Invest. https://doi.org/10.1159/000328713

    Article  PubMed  Google Scholar 

  11. 11.

    Miller EC, McIsaac DI, Chaput A, Antrobus J, Shenassa H, Lui A (2015) Increased postoperative day one discharges after implementation of a hysterectomy enhanced recovery pathway: a retrospective cohort study. Obstet Gynecol Surv. https://doi.org/10.1007/s12630-015-0347-6

    Article  Google Scholar 

  12. 12.

    Modesitt SC, Sarosiek BM, Trowbridge ER, Redick DL, Shah PM, Thiele RH, Tiouririne M, Hedrick TL (2016) Enhanced recovery implementation in major gynecologic surgeries: effect of care standardization. Obstet Gynecol. https://doi.org/10.1097/AOG.0000000000001555

    Article  PubMed  Google Scholar 

  13. 13.

    Keil DS, Schiff LD, Carey ET, Moulder JK, Goetzinger AM, Patidar SM, Hance LM, Kolarczyk LM, Isaak RS, Strassle PD, Schoenherr JW (2019) Predictors of admission after the implementation of an enhanced recovery after surgery pathway for minimally invasive gynecologic surgery. Anesth Analg. https://doi.org/10.1213/ANE.0000000000003339

    Article  PubMed  Google Scholar 

  14. 14.

    Lee J, Asher V, Nair A, White V, Brocklehurst C, Traves M, Bali A (2018) Comparing the experience of enhanced recovery programme for gynaecological patients undergoing laparoscopic versus open gynaecological surgery: a prospective study. Perioper Med. https://doi.org/10.1186/s13741-018-0096-5

    Article  Google Scholar 

  15. 15.

    Carey ET, Moulder JK (2018) Perioperative management and implementation of enhanced recovery programs in gynecologic surgery for benign indications. Obstet Gynecol. https://doi.org/10.1097/AOG.0000000000002696

    Article  PubMed  Google Scholar 

  16. 16.

    Trowbridge ER, Dreisbach CN, Sarosiek BM, Dunbar CP, Evans SL, Hahn LA, Hullfish KL (2018) Review of enhanced recovery programs in benign gynecologic surgery. Int Urogynecol J. https://doi.org/10.1007/s00192-017-3442-0

    Article  PubMed  Google Scholar 

  17. 17.

    Badawy M, Béïque F, Al-Halal H, Azar T, Akkour K, Lau SK, Gotlieb WH (2011) Anesthesia considerations for robotic surgery in gynecologic oncology. J Robot Surg. https://doi.org/10.1007/s11701-011-0261-z

    Article  PubMed  Google Scholar 

  18. 18.

    Lestar M, Gunnarsson L, Lagerstrand L, Wiklund P, Odeberg-Wernerman S (2011) Hemodynamic perturbations during robot-assisted laparoscopic radical prostatectomy in 45° trendelenburg position. Anesth Analg. https://doi.org/10.1213/ANE.0b013e3182075d1f

    Article  PubMed  Google Scholar 

  19. 19.

    Topçu HO, Cavkaytar S, Kokanali K, Guzel AI, Islimye M, Doganay M (2014) A prospective randomized trial of postoperative pain following different insufflation pressures during gynecologic laparoscopy. Eur J Obstet Gynecol Reprod Biol 182:81–85. https://doi.org/10.1016/j.ejogrb.2014.09.003

    Article  PubMed  Google Scholar 

  20. 20.

    Gurusamy KS, Vaughan J, Davidson BR (2014) Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006930.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Hua J, Gong J, Yao L, Zhou B, Song Z (2014) Low-pressure versus standard-pressure pneumoperitoneum for laparoscopic cholecystectomy: a systematic review and meta-analysis. Am J Surg 208:143–150. https://doi.org/10.1016/j.amjsurg.2013.09.027

    Article  PubMed  Google Scholar 

  22. 22.

    Kaloo P, Armstrong S, Kaloo C, Jordan V (2019) Interventions to reduce shoulder pain following gynaecological laparoscopic procedures. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011101.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Joshi GP, Bonnet F, Kehlet H, Bonnet F, Camu F, Fischer HBJ, Joshi GP, Neugebauer EAM, Rawal N, Schug SA, Simanski CJP, Kehlet H (2013) Evidence-based postoperative pain management after laparoscopic colorectal surgery. Color Dis. https://doi.org/10.1111/j.1463-1318.2012.03062.x

    Article  Google Scholar 

  24. 24.

    Sroussi J, Elies A, Rigouzzo A, Louvet N, Mezzadri M, Fazel A, Benifla JL (2017) Low pressure gynecological laparoscopy (7 mmHg) with AirSeal ® System versus a standard insufflation (15 mmHg): A pilot study in 60 patients. J Gynecol Obstet Hum Reprod 46:155–158. https://doi.org/10.1016/j.jogoh.2016.09.003

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kyle EB, Maheux-Lacroix S, Boutin A, Laberge PY, Lemyre M (2016) Low vs standard pressures in gynecologic laparoscopy: a systematic review. J Soc Laparoendosc Surg. https://doi.org/10.4293/JSLS.2015.00113

    Article  Google Scholar 

  26. 26.

    Özdemir-van Brunschot DMD, van Laarhoven KCJHM, Scheffer G-J, Pouwels S, Wever KE, Warlé MC (2016) What is the evidence for the use of low-pressure pneumoperitoneum? A systematic review. Surg Endosc 30:2049–2065. https://doi.org/10.1007/s00464-015-4454-9

    Article  PubMed  Google Scholar 

  27. 27.

    Kendrick DB, Strout TD (2005) The minimum clinically significant difference in patient-assigned numeric scores for pain. Am J Emerg Med 23:828–832. https://doi.org/10.1016/j.ajem.2005.07.009

    Article  PubMed  Google Scholar 

  28. 28.

    Cepeda MS, Africano JM, Polo R, Alcala R, Carr DB (2003) What decline in pain intensity is meaningful to patients with acute pain? Pain 105:151–157. https://doi.org/10.1016/s0304-3959(03)00176-3

    Article  PubMed  Google Scholar 

  29. 29.

    Bijur PE, Latimer CT, Gallagher EJ (2003) Validation of a verbally administered numerical rating scale of acute pain for use in the emergency department. Acad Emerg Med. https://doi.org/10.1197/aemj.10.4.390

    Article  PubMed  Google Scholar 

  30. 30.

    Wallace DH, Serpell MG, Baxter JN, O’Dwyer PJ (1997) Randomized trial of different insufflation pressures for laparoscopic cholecystectomy. Br J Surg 84:455–458. https://doi.org/10.1002/bjs.1800840408

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Warlé MC, Berkers AW, Langenhuijsen JF, van der Jagt MF, Dooper PM, Kloke HJ, Pilzecker D, Renes SH, Wever KE, Hoitsma AJ, van der Vliet JA, D’Ancona FCH (2013) Low-pressure pneumoperitoneum during laparoscopic donor nephrectomy to optimize live donors’ comfort. Clin Transpl. https://doi.org/10.1111/ctr.12143

    Article  Google Scholar 

  32. 32.

    Vijayaraghavan N, Sistla SC, Kundra P, Ananthanarayan PH, Karthikeyan VS, Ali SM, Sasi SP, Vikram K (2014) Comparison of standard-pressure and low-pressure pneumoperitoneum in laparoscopic cholecystectomy: a double blinded randomized controlled study. Surg Laparosc Endosc Percutaneous Tech 24:127–133. https://doi.org/10.1097/SLE.0b013e3182937980

    Article  Google Scholar 

  33. 33.

    Joshipura VP, Haribhakti SP, Patel NR, Naik RP, Soni HN, Patel B, Bhavsar MS, Narwaria MB, Thakker R (2009) A prospective randomized, controlled study comparing low pressure versus high pressure pneumoperitoneum during laparoscopic cholecystectomy. Surg Laparosc Endosc Percutaneous Tech 19:234–240. https://doi.org/10.1097/SLE.0b013e3181a97012

    Article  Google Scholar 

  34. 34.

    Bogani G, Uccella S, Cromi A, Serati M, Casarin J, Pinelli C, Ghezzi F (2014) Low vs standard pneumoperitoneum pressure during laparoscopic hysterectomy: prospective randomized trial. J Minim Invasive Gynecol 21:466. https://doi.org/10.1016/j.jmig.2013.12.091

    Article  PubMed  Google Scholar 

  35. 35.

    Hayden P, Cowman S (2011) Anaesthesia for laparoscopic surgery. Contin Educ Anaesthesia Crit Care Pain. https://doi.org/10.1093/bjaceaccp/mkr027

    Article  Google Scholar 

  36. 36.

    Srivastava A, Niranjan A (2010) Secrets of safe laparoscopic surgery: Anaesthetic and surgical considerations. J Minim Access Surg. https://doi.org/10.4103/0972-9941.72593

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Güldner A, Kiss T, Serpa Neto A, Hemmes SNT, Canet J, Spieth PM, Rocco PRM, Schultz MJ, Pelosi P, Gama de Abreu M (2015) Intraoperative protective mechanical ventilation for prevention of postoperative pulmonary complications. Anesthesiology. https://doi.org/10.1097/aln.0000000000000754

    Article  PubMed  Google Scholar 

  38. 38.

    Ladha K, Vidal Melo MF, McLean DJ, Wanderer JP, Grabitz SD, Kurth T, Eikermann M (2015) Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study. BMJ 351:h3646. https://doi.org/10.1136/bmj.h3646

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wijk L, Udumyan R, Pache B, Altman AD, Williams LL, Elias KM, McGee J, Wells T, Gramlich L, Holcomb K, Achtari C, Ljungqvist O, Dowdy SC, Nelson G (2019) International validation of Enhanced Recovery After Surgery Society guidelines on enhanced recovery for gynecologic surgery. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2019.04.028

    Article  PubMed  Google Scholar 

  40. 40.

    Meyer LA, Lasala J, Iniesta MD, Nick AM, Munsell MF, Shi Q, Wang XS, Cain KE, Lu KH, Ramirez PT (2018) Effect of an enhanced recovery after surgery program on opioid use and patient-reported outcomes. Obstet Gynecol 132:281–290. https://doi.org/10.1097/AOG.0000000000002735

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ljungqvist O, Scott M, Fearon KC (2017) Enhanced recovery after surgery: a review. JAMA Surg 152:292–298. https://doi.org/10.1001/jamasurg.2016.4952

    Article  PubMed  Google Scholar 

  42. 42.

    Neudecker J, Sauerland S, Neugebauer E, Bergamaschi R, Bonjer HJ, Cuschieri A, Fuchs KH, Jacobi C, Jansen FW, Koivusalo AM, Lacy A, McMahon MJ, Millat B, Schwenk W (2002) The European Association for Endoscopic Surgery clinical practice guideline on the pneumoperitoneum for laparoscopic surgery. Surg Endosc Other Interv Tech 16:1121–1143

    CAS  Article  Google Scholar 

Download references

Funding

The authors have no financial support to disclose. The data that support the findings of this study are available from the corresponding author, [CF] upon reasonable request.

Author information

Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CEF and ER. The first draft of the manuscript was written by CEF, and all the authors commented on previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Christine E. Foley.

Ethics declarations

Conflict of interest

Christine E. Foley has no conflicts of interest to disclose. Erika Ryan has no conflicts of interest to disclose. Jian Qun Huang is a consultant for ConMed, Intuitive Surgical and Ethicon.

Ethical approval

This retrospective chart review study involving human participants was in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The Human Investigation Committee (IRB) of New York University School of Medicine approved this study. IRB Date and Number: 4/3/19: i18-00606, 6/12/15: i15-00360.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Enhanced recovery protocol for ambulatory robot-assisted gynecological surgery

Appendix 1: Enhanced recovery protocol for ambulatory robot-assisted gynecological surgery

Preoperative on day of surgery:

  1. 1.

    Follow Departmental guidelines regarding nil per os (NPO) status. This allows for clear liquids up until 2 h prior to surgery.

  2. 2.

    Tylenol 1000 mg per os (PO) in holding area.

Intraoperative:

  1. 1.

    Use propofol-based total intravenous anesthesia (TIVA) as the primary anesthetic

  2. 2.

    Antibiotic prophylaxis as per protocol.

  3. 3.

    Orogastric (OG)/nasogastric (NG) tube and Foley to be placed and removed prior to ex-tubation unless directed by surgical team.

  4. 4.

    Zofran 4 mg intravenous push (IVP) (if not contraindicated).

  5. 5.

    Decadron 10 mg IVP (if not contraindicated).

  6. 6.

    Hydromorphone 1 mg intramuscular (IM) approximately 30 min prior to emergence (consider less for smaller individuals).

  7. 7.

    Toradol 30 mg IM prior to emergence (if not contraindicated).

  8. 8.

    Fluid Management: 15 cc/kg/h + replacement for blood loss for the first two hours for surgery and then continue at 5 cc/kg/h.

  9. 9.

    Local infiltration of surgical sites with 0.5% bupivacaine per surgical team.

Postoperative in postoperative anesthesia unit (PACU):

  1. 1.

    Incentive spirometry to begin in PACU.

  2. 2.

    IV fluids at 15 cc/kg/h for the first hour; then 5 cc/kg/h.

  3. 3.

    Tea or coffee as preferred PO intake.

  4. 4.

    Rescue medications in PACU:

  5. a.

    Antiemetics (choice of)

  6. i.

    Haldol 1 mg IM × 1.

  7. ii.

    Tigan 200 mg IM × 1.

  1. (b)

    Breakthrough analgesics (choice of)

  2. i.

    Fentanyl in titrated doses of 25 mcg IV per dose.

Percocet/Vicodin when necessary (PRN).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Foley, C.E., Ryan, E. & Huang, J.Q. Less is more: clinical impact of decreasing pneumoperitoneum pressures during robotic surgery. J Robotic Surg (2020). https://doi.org/10.1007/s11701-020-01104-4

Download citation

Keywords

  • ERAS
  • Laparoscopy
  • Pneumoperitoneum
  • Postoperative pain
  • Robotic surgery