Skip to main content
Log in

The acceptance and adoption of transoral robotic surgery in Australia and New Zealand

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Transoral robotic surgery (TORS) provides improved access to head and neck subsites resulting in well-validated functional and oncological outcomes, but access to and cost of robotic platforms can limit their use. Evidence suggests TORS is increasingly being adopted globally, but there is a paucity of data on the adoption and diffusion of TORS in Australia and New Zealand. A cross-sectional analysis was performed. An online survey was distributed to otolaryngologists and head and neck surgeons through three different Australian and New Zealand specialty membership databases. A 5-point Likert scale based on a Unified Theory of Acceptance and Use of Technology (UTAUT) model was incorporated to assess barriers and facilitators to adoption. 77 respondents completed the survey. 43.6% of head and neck surgeons had performed TORS. The most common cases were lateral oropharyngectomy (35.9%), base of tongue resection (33.3%), tongue base mucosectomy (28.2%), supraglottic laryngectomy (15.4%) and TORS for obstructive sleep apnoea (12.8%). Perceived barriers to adoption were high costs, access to and availability of the robotic platform and limited training opportunities. This study provides evidence of adoption of TORS in Australia and New Zealand; however, there is a perception that significant barriers to adoption persist. Results from this study may help guide decisions on how we train and license surgeons in the era of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hockstein NG, Nolan JP, O’Malley BW Jr, Woo YJ (2005) Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin. The Laryngoscope 115(5):780–785. https://doi.org/10.1097/01.mlg.0000159202.04941.67

    Article  PubMed  Google Scholar 

  2. O’Malley BW Jr, Weinstein GS, Hockstein NG (2006) Transoral robotic surgery (TORS): glottic microsurgery in a canine model. J Voice Off J Voice Found 20(2):263–268. https://doi.org/10.1016/j.jvoice.2005.10.004

    Article  Google Scholar 

  3. Weinstein GS, O’Malley BW Jr, Hockstein NG (2005) Transoral robotic surgery: supraglottic laryngectomy in a canine model. The Laryngoscope 115(7):1315–1319. https://doi.org/10.1097/01.MLG.0000170848.76045.47

    Article  PubMed  Google Scholar 

  4. Weinstein GS, O’Malley BW Jr, Snyder W, Sherman E, Quon H (2007) Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 133(12):1220–1226

    Article  PubMed  Google Scholar 

  5. Moore EJ, Olsen SM, Laborde RR, Garcia JJ, Walsh FJ, Price DL, Janus JR, Kasperbauer JL, Olsen KD (2012) Long-term functional and oncologic results of transoral robotic surgery for oropharyngeal squamous cell carcinoma. Mayo Clinic Proc 87(3):219–225

    Article  Google Scholar 

  6. Van der Vorst S, Prasad V, Remacle M, Bachy V, Lawson G (2015) Functional outcomes after transoral robotic surgery for squamous cell carcinoma of the oropharynx. B-ent Suppl 24:15–19

    Google Scholar 

  7. Hutcheson KA, Holsinger FC, Kupferman ME, Lewin JS (2015) Functional outcomes after TORS for oropharyngeal cancer: a systematic review. Eur Arch of Oto-Rhino-laryngol 272(2):463–471. https://doi.org/10.1007/s00405-014-2985-7

    Article  Google Scholar 

  8. Liu WS, Limmer A, Jabbour J, Clark J (2017) Trans-oral robotic surgery in oropharyngeal carcinoma—a guide for general practitioners and patients. Austral Family Phys 46(1):30–32

    CAS  Google Scholar 

  9. Dombree M, Crott R, Lawson G, Janne P, Castiaux A, Krug B (2014) Cost comparison of open approach, transoral laser microsurgery and transoral robotic surgery for partial and total laryngectomies. Eur Arch Oto-Rhino-laryngol 271(10):2825–2834. https://doi.org/10.1007/s00405-014-3056-9

    Article  Google Scholar 

  10. Shaw RJ, Holsinger FC, Paleri V, Evans M, Tudur-Smith C, Ferris RL (2015) Surgical trials in head and neck oncology: renaissance and revolution? Head Neck 37(7):927–930. https://doi.org/10.1002/hed.23846

    Article  PubMed  Google Scholar 

  11. Nichols AC, Yoo J, Hammond JA, Fung K, Winquist E, Read N, Venkatesan V, MacNeil SD, Ernst DS, Kuruvilla S, Chen J, Corsten M, Odell M, Eapen L, Theurer J, Doyle PC, Wehrli B, Kwan K, Palma DA (2013) Early-stage squamous cell carcinoma of the oropharynx: radiotherapy vs. trans-oral robotic surgery (ORATOR)—study protocol for a randomized phase II trial. BMC Cancer 13:133. https://doi.org/10.1186/1471-2407-13-133

    Article  PubMed  PubMed Central  Google Scholar 

  12. Howard J, Masterson L, Dwivedi RC, Riffat F, Benson R, Jefferies S, Jani P, Tysome JR, Nutting C (2016) Minimally invasive surgery versus radiotherapy/chemoradiotherapy for small-volume primary oropharyngeal carcinoma. Cochrane Database Syst Rev 12:Cd010963. https://doi.org/10.1002/14651858.CD010963.pub2

    Article  PubMed  Google Scholar 

  13. Cracchiolo JR, Roman BR, Kutler DI, Kuhel WI, Cohen MA (2016) Adoption of transoral robotic surgery compared with other surgical modalities for treatment of oropharyngeal squamous cell carcinoma. J Surg Oncol 114(4):405–411. https://doi.org/10.1002/jso.24353

    Article  PubMed  PubMed Central  Google Scholar 

  14. O’Malley BW Jr, Weinstein GS (2007) Robotic skull base surgery: preclinical investigations to human clinical application. Arch Otolaryngol Head Neck Surg 133(12):1215–1219. https://doi.org/10.1001/archotol.133.12.1215

    Article  PubMed  Google Scholar 

  15. Chan JY, Tsang RK, Eisele DW, Richmon JD (2015) Transoral robotic surgery of the parapharyngeal space: a case series and systematic review. Head Neck 37(2):293–298. https://doi.org/10.1002/hed.23557

    Article  PubMed  Google Scholar 

  16. Tae K, Song CM, Ji YB, Sung ES, Jeong JH, Kim DS (2016) Oncologic outcomes of robotic thyroidectomy: 5-year experience with propensity score matching. Surg Endosc 30(11):4785–4792. https://doi.org/10.1007/s00464-016-4808-y

    Article  PubMed  Google Scholar 

  17. Byeon HK, Holsinger FC, Kim DH, Kim JW, Park JH, Koh YW, Choi EC (2015) Feasibility of robot-assisted neck dissection followed by transoral robotic surgery. Br J Oral Maxillofac Surg 53(1):68–73. https://doi.org/10.1016/j.bjoms.2014.09.024

    Article  CAS  PubMed  Google Scholar 

  18. Krishnan S, Connell J, Ofo E (2016) Transoral robotic surgery base of tongue mucosectomy for head and neck cancer of unknown primary. ANZ J Surg. https://doi.org/10.1111/ans.13741

    Article  PubMed  Google Scholar 

  19. Lang S, Mattheis S, Hasskamp P, Lawson G, Guldner C, Mandapathil M, Schuler P, Hoffmann T, Scheithauer M, Remacle M (2017) A european multicenter study evaluating the flex robotic system in transoral robotic surgery. The Laryngoscope 127(2):391–395. https://doi.org/10.1002/lary.26358

    Article  PubMed  Google Scholar 

  20. Mattheis S, Hasskamp P, Holtmann L, Schafer C, Geisthoff U, Dominas N, Lang S (2017) Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck 39(3):471–475. https://doi.org/10.1002/hed.24611

    Article  PubMed  Google Scholar 

  21. Benmessaoud C, Kharrazi H, MacDorman KF (2011) Facilitators and barriers to adopting robotic-assisted surgery: contextualizing the unified theory of acceptance and use of technology. PLoS One 6(1):e16395. https://doi.org/10.1371/journal.pone.0016395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Viswanath Venkatesh MGM, Davis GB, Fred D, Davis (2003) User acceptance of information technology: toward a unified view. MIS Q 27(3):425–478

    Article  Google Scholar 

  23. Venkatesh V, Dennis AR, Brown SA (2010) Predicting collaboration technology use: integrating technology adoption and collaboration research. J Manag Inf Syst 27(2):9–54. https://doi.org/10.2753/mis0742-1222270201

    Article  Google Scholar 

  24. Rothery C, Claxton K, Palmer S, Epstein D, Tarricone R, Sculpher M (2017) Characterising uncertainty in the assessment of medical devices and determining future research needs. Health Econ 26(Suppl 1):109–123. https://doi.org/10.1002/hec.3467

    Article  PubMed  Google Scholar 

  25. Rogers E (2003) Diffusion of innovation, 5 edn. Simon and Schuster, New York

    Google Scholar 

  26. Berwick DM (2003) Disseminating innovations in health care. Jama 289(15):1969–1975. https://doi.org/10.1001/jama.289.15.1969

    Article  PubMed  Google Scholar 

  27. Moore G (1999) Crossing the chasm: marketing and selling high-tech products to mainstream customers. Harpers Business, New York

    Google Scholar 

  28. Chen MM, Roman SA, Kraus DH, Sosa JA, Judson BL (2014) Transoral robotic surgery: a population-level analysis. Otolaryngol Head Neck Surg Offi J Am Acad Otolaryngol Head Neck Surg 150 (6):968–975. https://doi.org/10.1177/0194599814525747

    Article  Google Scholar 

  29. Gross ND, Holsinger FC, Magnuson JS, Duvvuri U, Genden EM, Ghanem TA, Yaremchuk KL, Goldenberg D, Miller MC, Moore EJ, Morris LG, Netterville J, Weinstein GS, Richmon J (2016) Robotics in otolaryngology and head and neck surgery: recommendations for training and credentialing: A report of the 2015 AHNS education committee, AAO-HNS robotic task force and AAO-HNS sleep disorders committee. Head Neck 38(Suppl 1):E151–E158. https://doi.org/10.1002/hed.24207

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sobel RH, Blanco R, Ha PK, Califano JA, Kumar R, Richmon JD (2016) Implementation of a comprehensive competency-based transoral robotic surgery training curriculum with ex vivo dissection models. Head Neck 38(10):1553–1563. https://doi.org/10.1002/hed.24475

    Article  PubMed  Google Scholar 

  31. Curry M, Malpani A, Li R, Tantillo T, Jog A, Blanco R, Ha PK, Califano J, Kumar R, Richmon J (2012) Objective assessment in residency-based training for transoral robotic surgery. The Laryngoscope 122(10):2184–2192. https://doi.org/10.1002/lary.23369

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sperry SM, O’Malley BW Jr, Weinstein GS (2014) The University of Pennsylvania curriculum for training otorhinolaryngology residents in transoral robotic surgery. ORL 76 (6):342–352. https://doi.org/10.1159/000369624

    Article  PubMed  Google Scholar 

  33. Motz K, Chang HY, Quon H, Richmon J, Eisele DW, Gourin CG (2017) Association of transoral robotic surgery with short-term and long-term outcomes and costs of care in oropharyngeal cancer surgery. JAMA Otolaryngol Head Neck Surg. https://doi.org/10.1001/jamaoto.2016.4634

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodin D, Caulley L, Burger E, Kim J, Johnson-Obaseki S, Palma D, Louie AV, Hansen A, O’Sullivan B (2017) Cost-effectiveness analysis of radiation therapy versus transoral robotic surgery for oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 97(4):709–717. https://doi.org/10.1016/j.ijrobp.2016.11.029

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

There are no acknowledgements.

Funding

No grants or financial support was received for this study. The corresponding author is not in receipt of a scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giri Krishnan.

Ethics declarations

Conflict of interest

Dr. Giri Krishnan, Dr. Jack Mintz and Mr. Andrew Foreman declare that they have no conflict of interest.

Disclosure

Professor Suren Krishnan has received educational grants from Intuitive and Medrobotics. Mr. John-Charles Hodge has received educational grants from Intuitive and Medrobotics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 106 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, G., Mintz, J., Foreman, A. et al. The acceptance and adoption of transoral robotic surgery in Australia and New Zealand. J Robotic Surg 13, 301–307 (2019). https://doi.org/10.1007/s11701-018-0856-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-018-0856-8

Keywords

Navigation