Fabrication of composite materials MIL-100(Fe)/Indonesian activated natural zeolite as enhanced CO2 capture material

Abstract

Capturing carbon dioxide using porous materials such as zeolite and metal–organic frameworks (MOFs) could be one of the best efforts to reduce greenhouse gas emissions. This study was aimed at investigating the effect of the addition of Indonesian activated natural zeolite (ANZ) into MOF-type Materials of Institute Lavoisier (MIL-100(Fe)) on their properties and CO2 adsorption capacity. Natural zeolite was activated by acidification, which was followed by the ion exchange process. The ANZ@MIL-100(Fe) composite was synthesized by the ex situ method using sonication, with the addition of ANZ in several variations of weight for 1 h. The measurement of CO2 adsorption capacity was done by the volumetric method. The X-ray diffraction analysis showed the characteristic peaks of both ANZ and MIL-100(Fe) in the composite materials. The Fourier-transform infrared analysis exhibited absorption peaks at 1634, 1058, and 1432 cm−1 corresponding to the C=O bond from MIL-100(Fe), N–H bending, and Si–O bond of ANZ, respectively. The addition of ANZ into MIL-100(Fe) decreased the porosity, surface area, and nitrogen sorption isotherm capacity of MIL-100(Fe); however, it increased the thermal stability of MIL-100(Fe). The scanning electron microscopy–energy-dispersive X-ray analysis revealed the existence of Si and Al elements in ANZ@MIL-100(Fe). The measurement of CO2 adsorption capacity showed 300% enhancement after the addition of ANZ 20 wt% reaching up to 7.01 mmol/g.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Bashkova S, Bandosz TJ (2014) Effect of surface chemical and structural heterogeneity of copper-based MOFS/graphite oxide composites on the adsorption of ammonia. J Colloid Interface Sci 417:109–114. https://doi.org/10.1016/j.jcis.2013.11.010

    CAS  Article  PubMed  Google Scholar 

  2. Botto IL, Canafoglia ME, Lick ID, Cabello CI, Schalamuk IB, Minelli G, Ferraris G (2004) Environmental application of natural microporous aluminosilicates: NOx reduction by propane over modified clinoptilolite zeolite. Anales de la Asociación Química Argentina 92(1):139–153

    CAS  Google Scholar 

  3. Cavenati S, Grande CA, Rodrigues AE (2004) Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data 49(4):1095–1101. https://doi.org/10.1021/je0498917

    CAS  Article  Google Scholar 

  4. Chen C, Ahn WS (2011) CO2 capture using mesoporous alumina prepared by a sol–gel process. Chem Eng J 166(2):646–651. https://doi.org/10.1016/j.cej.2010.11.038

    CAS  Article  Google Scholar 

  5. Chen C, Kim J, Ahn WS (2012) Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel 95:360–364. https://doi.org/10.1016/j.fuel.2011.10.072

    CAS  Article  Google Scholar 

  6. Chen C, Park D, Ahn W (2014) CO2 capture using zeolite 13X prepared from bentonite. Appl Surf Sci 292:63–67. https://doi.org/10.1016/j.apsusc.2013.11.064

    CAS  Article  Google Scholar 

  7. Crossno SK, Kalbus LH, Kalbus GE (1996) Determinations of carbon dioxide by titration. J Chem Educ 73(2):175–176. https://doi.org/10.1021/ed073p175

    CAS  Article  Google Scholar 

  8. Darmayanti L, Kadja GTM, Notodarmojo S, Damanhuri E, Mukti RR (2019) Structural alteration within fly ash-based geopolymers governing the adsorption of Cu2+ from aqueous environment: effect of alkali activation. J Hazard Mater 377:305–314. https://doi.org/10.1016/j.microc.2019.01.001

    CAS  Article  PubMed  Google Scholar 

  9. García Márquez A, Demessence A, Platero-Prats AE, Heurtaux D, Horcajada P, Serre C, Chang JS, Férey G, de la Peña-O’Shea AV, Boissière C, Grosso D, Sanchez C (2012) Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem 32:5165–5174. https://doi.org/10.1002/ejic.201200710

    CAS  Article  Google Scholar 

  10. Górka J, Fulvio PF, Pikus S, Jaroniec M (2010) Mesoporous metal organic framework–boehmite and silica composites. Chem Commun 46(36):6798–6800. https://doi.org/10.1039/C0CC01578D

    Article  Google Scholar 

  11. Hamed FAE, Yasin SIB, Ali MS (2015) The removal of some metals by natural and modified zeolite from produced water. J Basic Appl Chem 5(2):16–22. ISSN 2090–424X

  12. Hasanah DN (2017) Transformation of Indonesian natural zeolite into purer mordenite phase with dealumination and Seed Assisted Synthesis under hydrothermal condition, Bachelor Project, Surakarta: Prodi Kimia, FMIPA, UNS.

  13. Heraldy E, Hisyam SW, Sulistiyono S (2010) Characterization and activation of natural zeolite from Ponorogo, Indonesian. J Chem 3(2):91–97. https://doi.org/10.22146/ijc.21891

    Article  Google Scholar 

  14. Horcajada P, Surblé S, Serre C, Hong DY, Seo YK, Chang JS, Greneche JM, Margiolaki I, Férey G (2007) Synthesis and catalytic properties of MIL-100 (Fe), an iron(III) carboxylate with large pores. Chem Commun 27:2820–2822. https://doi.org/10.1039/B704325B

    Article  Google Scholar 

  15. Kadja GTM, Fabiani A, Aziz MHH, Fajar ATN, Prasetyo A, Suendo V, Ng E-P, Mukti RR (2017) The effect of structural properties of natural silica precursors in the mesoporogen-free synthesis of hierarchical ZSM-5 below 100 °C. Adv Powder Technol 28(2):443–452. https://doi.org/10.1016/j.apt.2016.10.017

    CAS  Article  Google Scholar 

  16. Korkuna O, Leboda R, Skubiszewska-Zie J, Vrublevs’ka T, Gun’ko VM, Ryczkowski J (2006) Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater 87(3):243–254. https://doi.org/10.1016/j.micromeso.2005.08.002

    CAS  Article  Google Scholar 

  17. Lestari WW, Irwinsyah STE, Krisnandi YK, Arrozi USF, Heraldy E, Kadja GTM (2019) Composite material consisting of HKUST-1 and Indonesian activated natural zeolite and its application in CO2 capture. Open Chem 2019(17):1279–1287. https://doi.org/10.1515/chem-2019-0136

    CAS  Article  Google Scholar 

  18. Liang Z, Marshall M, Chaffee AL (2009) CO2 adsorption-based separation by metal-organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels 23(5):2785–2789. https://doi.org/10.1021/ef800938e

    CAS  Article  Google Scholar 

  19. Liu X, Sun T, Hu J, Wang S (2016) Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. J Mater Chem A 4(10):3584–3616. https://doi.org/10.1039/C5TA09924B

    CAS  Article  Google Scholar 

  20. Mansouri N, Rikhtegar N, Panahi HA, Atabi F, Shahraki BK (2013) Porosity, characterization and structural properties of natural zeolite-clinoptilolite as asorbent. Environ Protect Eng 39(1):139–152. https://doi.org/10.37190/epe130111

    CAS  Article  Google Scholar 

  21. Ndlela SC, Shanks BH (2003) Reducibility of potassium-promoted iron oxide under hydrogen conditions. Indus Eng Chem Res 42(10):2112–2121. https://doi.org/10.1021/ie020841+

    CAS  Article  Google Scholar 

  22. Petit C, Bandosz TJ (2009) MOFs–graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks. Adv Mater 21(46):4753–4757. https://doi.org/10.1002/adma.200901581

    CAS  Article  Google Scholar 

  23. Petit C, Bandosz TJ (2011) Synthesis, characterization, and ammonia adsorption properties of mesoporous metal-organic framework (MIL-100(Fe))-graphite oxide composites: exploring the limits of materials fabrication. Adv Funct Mater 21(11):2108–2117. https://doi.org/10.1002/adfm.201002517

    CAS  Article  Google Scholar 

  24. Petit C, Burress J, Bandosz TJ (2011) The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon 49(2):563–572. https://doi.org/10.1016/j.carbon.2010.09.059

    CAS  Article  Google Scholar 

  25. Prasanth KP, Rallapalli P, Raj MC, Bajaj HC, Jasra RV (2011) Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal–organic framework. Int J Hydrog Energy 36(13):7594–7601. https://doi.org/10.1016/j.ijhydene.2011.03.109

    CAS  Article  Google Scholar 

  26. Puspitasari T, Kadja GTM, Radiman CL, Darwis D, Mukti RR (2018) Two-step preparation of amidoxime-functionalized natural zeolites hybrids for the removal of Pb2+ ions in aqueous environment. Mater Chem Phys 216:187–205. https://doi.org/10.1016/j.matchemphys.2018.05.083

    CAS  Article  Google Scholar 

  27. Quadrelli R, Peterson S (2007) The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy 35(11):5938–5952. https://doi.org/10.1016/j.enpol.2007.07.001

    Article  Google Scholar 

  28. Rivera-Garza M, Olguın MT, Garcıa-Sosa I, Alcántara D, Rodrıguez-Fuentes G (2000) Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater 39(3):431–444. https://doi.org/10.1016/S1387-1811(00)00217-1

    CAS  Article  Google Scholar 

  29. Sathre R, Masanet E (2013) Prospective life-cycle modeling of a carbon capture and storage system using metal–organic frameworks for CO2 capture. RSC Adv 3(15):4964–4975. https://doi.org/10.1039/C3RA40265G

    CAS  Article  Google Scholar 

  30. Seo YK, Yoon JW, Lee JS, Lee U, Hwang YK, Jun CH, Horcajada P, Serre C, Chang JS (2012) Large scale fluorine-free synthesis of hierarchically porous iron(III)trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous Mesoporous Mater 157:137–145. https://doi.org/10.1016/j.micromeso.2012.02.027

    CAS  Article  Google Scholar 

  31. Suminta S, Las T (2005) Refinement of natural mordenite and clinoptilolite crystal cage using Rietveld method, (Penghalusan struktur sangkar kristal mordenite dan clinoptilolite alam dengan metode rietveld). J Zeolit Indones 4:78–85

    Google Scholar 

  32. Tranchemontagne DJ, Hunt JR, Yaghi OM (2008) Room temperature synthesis of metal-organic frameworks: MOFs-5, MOFs-74, MOFs-177, MOFs-199, and IRMOFs-0. Tetrahedron 64(36):8553–8855. https://doi.org/10.1016/j.tet.2008.06.036

    CAS  Article  Google Scholar 

  33. Trisunaryanti W, Triwahyuni E, Sudiono S (2010) Preparation, characterizations and modification of Ni-Pd/natural zeolite catalysts. IndonesJ Chem 5:48–53. https://doi.org/10.22146/ijc.21838

    Article  Google Scholar 

  34. U.S. Energy Information Administration, International energy outlook, 2010,Washington, DC. http://www.eia.doe.gov/oiaf/ieo/index.html

  35. Wiersum AD, Giovannangeli C, Vincent D, Bloch E, Reinsch H, Stock N, Lee JS, Chang JS, Llewellyn PL (2013) Experimental screening of porous materials for high pressure gas adsorption and evaluation in gas separations: application to MOFs (MIL-100 and CAU-10). ACS Comb Sci 15(2):111–119. https://doi.org/10.1021/co300128w

    CAS  Article  PubMed  Google Scholar 

  36. Yang ST, Kim J, Ahn WS (2010) CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions. Microporous Mesoporous Mater 135(1–3):90–94. https://doi.org/10.1016/j.micromeso.2010.06.015

    CAS  Article  Google Scholar 

  37. Yulizar E, Kadja GTM, Safaat M (2016) Well-exposed gold nanoclusters on Indonesia natural zeolite: a highly active and reusable catalyst for the reduction of p-nitrophenol. React Kinet Mech Catal 117:353–363. https://doi.org/10.1007/s11144-015-0916-2

    CAS  Article  Google Scholar 

  38. Zhang Z, Zhang W, Chen X, Xia Q, Li Z (2010) Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area. Sep Sci Technol 45(5):710–719. https://doi.org/10.1080/01496390903571192

    CAS  Article  Google Scholar 

  39. Zhang Z, Yao ZZ, Xiang S, Chen B (2014) Perspective of microporous metal–organic frameworks for CO2 capture and separation. Energy Environ Sci 7(9):2868–2899. https://doi.org/10.1039/C4EE00143E

    CAS  Article  Google Scholar 

  40. Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W (2015a) Facile synthesis of MIL-100 (Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J 259:183–190. https://doi.org/10.1016/j.cej.2014.07.119

    CAS  Article  Google Scholar 

  41. Zhang Y, Su W, Sun Y, Liu J, Liu X, Wang X (2015b) Adsorption equilibrium of N2, CH4, and CO2 on MIL-101. J Chem Eng Data 60(10):2951–2957. https://doi.org/10.1021/acs.jced.5b00327

    CAS  Article  Google Scholar 

  42. Zhao Y, Ding H, Zhong Q (2013) Synthesis and characterization of MOFs-aminated graphite oxide composites for CO2 capture. Appl Surface Sci 284:138–144. https://doi.org/10.1016/j.apsusc.2013.07.068

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Indonesian Ministry of Research, Technology and Higher Education (Kemenristek DIKTI) under the scheme PDUPT 2018-2019 research grant project number. 474/UN 27.21/PP/2018 and 718/UN27.21/PN/2019. We would also like to thank M.Sc. Wahyu Prasetyo Utomo from ITS Surabaya for assisting with the XRD measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Witri Wahyu Lestari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lestari, W.W., Yunita, L., Saraswati, T.E. et al. Fabrication of composite materials MIL-100(Fe)/Indonesian activated natural zeolite as enhanced CO2 capture material. Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01558-2

Download citation

Keywords

  • Activated natural zeolite
  • CO2
  • Adsorption
  • Composites
  • MIL-100(Fe)