Skip to main content

Advertisement

Log in

Effect of oxygen diffusion path radii on the oxygen intake/release properties of Brownmillerite SrCoO\( _{2.5} \)

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Chemical modification has been proved to be an effective way to tune various material properties. Herein, the oxygen intake/release properties of substituted Sr\( _{1-x} \)M\( _{x} \)CoO\( _{2.5} \) (M = Ca, Ba, x = 0.02 (2 at. %), 0.05 (5 at. %), 0.1 (10 at. %), and 0.2 (20 at. %)) are explored. The substitution range was limited to the stability range of the brownmillerite structure. Phase purity and the unit cell expansion/contraction by substitution were confirmed by X-ray diffraction. The oxygen intake/release of the substituted samples was characterized by a custom-built volumetric apparatus and iodometric titration. Thermal expansion coefficient and electrical conductivity measurements were carried out on substituted samples. The reversible oxygen intake/release was found to decrease with both Ba and Ca substitution, even though a reduction in activation energy by Ba substitution was observed. This is correlated with an increased bond dissociation energy and a drastic decrease in critical radius of the bottle neck through which oxide ion migration occurs, especially with Ba substitution.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data are available from the corresponding author on request.

References

  • Aguadero A, Pérez-Coll D, Alonso J, Skinner S, Kilner J (2012) A new family of Mo-doped SrCoO\(_{3-\delta }\) perovskites for application in reversible solid state electrochemical cells. Chem Mater 24(14):2655–2663

    Article  CAS  Google Scholar 

  • Beppu K, Hosokawa S, Shibano T, Demizu A, Kato K, Wada K, Asakura H, Teramura K, Tanaka T (2017) Enhanced oxygen-release/storage properties of Pd-loaded Sr\(_{3}\)Fe\(_{2}\)O\(_{7-\delta }\). Phys Chem Chem Phys 19(21):14107–14113

    Article  CAS  PubMed  Google Scholar 

  • de la Calle C, Aguadero A, Alonso J, Fernández-Díaz M (2008) Correlation between reconstructive phase transitions and transport properties from SrCoO\(_{2.5}\) brownmillerite: a neutron diffraction study. Solid State Sci 10(12):1924–1935

    Article  Google Scholar 

  • De la Calle C, Alonso J, Aguadero A, Fernández-Díaz M (2009) Phase transformations in Sr\(_{0.8}\)Ba\(_{0.2}\)CoO\(_{2.5}\) brownmillerite: correlation between structure and transport properties. Dalton Trans 21:4104–4114

    Google Scholar 

  • Cook RL, Sammells AF (1991) On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells. Solid State Ion 45(3–4):311–321

    Article  CAS  Google Scholar 

  • Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee YL, Morgan D, Christen HM, Bluhm H, Shao-Horn Y (2012) Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci 5(3):6081–6088

    Article  CAS  Google Scholar 

  • Darwent Bd (1970) National Bureau of Standards, US

  • Di Monte R, Kašpar J (2005) Heterogeneous environmental catalysis – a gentle art: CeO\( _{2} \) - ZrO\( _{2} \) mixed oxides as a case history. Catal Today 100(1–2):27–35

    Article  Google Scholar 

  • Fergus JW (2007) Perovskite oxides for semiconductor-based gas sensors. Sens Actuators B: Chem 123(2):1169–1179

    Article  CAS  Google Scholar 

  • Gaczynski P, Harpf A, Böer J, Kircheisen R, Kriegel R, Becker KD (2018) 57fe mössbauer study into oxygen vacancy disorder in (Ba\( _{0.5} \)Sr\( _{0.5} \))(Co\( _{0.8} \)Fe\( _{0.2} \))O\(_{3-\delta }\). Solid State Ion 316:59–65

    Article  CAS  Google Scholar 

  • Geffroy PM, Blond E, Richet N, Chartier T (2017) Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chem Eng Sci 162:245–261

    Article  CAS  Google Scholar 

  • Guntuka S, Banerjee S, Farooq S, Srinivasan M (2008) A-and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent 1. thermogravimetric analysis of equilibrium and kinetics. Indus Eng Chem Res 47(1):154–162

    Article  CAS  Google Scholar 

  • Huang X, Ni C, Zhao G, Irvine JT (2015) Oxygen storage capacity and thermal stability of the CuMnO\( _{2} \)-CeO\( _{2} \) composite system. J Mater Chem A 3(24):12958–12964

    Article  CAS  Google Scholar 

  • Ikeda H, Nikata S, Hirakawa E, Tsuchida A, Miura N (2016) Oxygen sorption/desorption behavior and crystal structural change for SrFeO\(_{3-\delta }\). Chem Eng Sci 147:166–172

    Article  CAS  Google Scholar 

  • Jacobson A, Hutchison J (1980) An investigation of the structure of 12H BaCoO\( _{2.6} \) by electron microscopy and powder neutron diffraction. J Solid State Chem 35(3):334–340

    Article  CAS  Google Scholar 

  • Jain S, Adiga K, Verneker VP (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40:71–79

    Article  CAS  Google Scholar 

  • Jeen H, Choi WS, Biegalski MD, Folkman CM, Tung IC, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF, Lee HN (2013) Reversible redox reactions in an epitaxially stabilized SrCoO\(_{x}\) oxygen sponge. Nat Mater 12(11):1057

    Article  CAS  PubMed  Google Scholar 

  • Karppinen M, Matvejeff M, Salomäki K, Yamauchi H (2002) Oxygen content analysis of functional perovskite-derived cobalt oxides. J Mater Chem 12(6):1761–1764

    Article  CAS  Google Scholar 

  • Karppinen M, Yamauchi H, Otani S, Fujita T, Motohashi T, Huang YH, Valkeapää M, Fjellvåg H (2006) Oxygen nonstoichiometry in YBaCo\( _{4} \)O\( _{7+\delta } \) : large low-temperature oxygen absorption/desorption capability. Chem Mater 18(2):490–494

    Article  CAS  Google Scholar 

  • Kim JH, Manthiram A (2008) LnBaCo\( _{2} \)O\(_{5+\delta }\) oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155(4):B385–B390

    Article  CAS  Google Scholar 

  • Lekse JW, Natesakhawat S, Alfonso D, Matranga C (2014) An experimental and computational investigation of the oxygen storage properties of BaLnFe\( _{2} \)O\( _{5+\delta } \) and BaLnCo\( _{2} \)O\( _{5+\delta } \) (Ln= La, Y) perovskites. J Mater Chem A 2(7):2397–2404

    Article  CAS  Google Scholar 

  • Liu S, Tan X, Shao Z, Diniz da Costa JC (2006) Ba\( _{0.5} \)Sr\( _{0.5} \)Co\( _{0.8} \)Fe\( _{0.2} \)O\(_{3-\delta }\) ceramic hollow-fiber membranes for oxygen permeation. AIChE J 52(10):3452–3461

    Article  CAS  Google Scholar 

  • Liu Y, Tan X, Li K (2006) Mixed conducting ceramics for catalytic membrane processing. Catal Rev 48(02):145–198

    Article  CAS  Google Scholar 

  • Miura N, Murae H, Kusaba H, Tamaki J, Sakai G, Yamazoe N (1999) Oxygen permeability and phase transformation of Sr\(_{0.9}\)Ca\(_{0.1}\)CoO\(_{2.5 + \delta }\). J Electrochem Soc 146(7):2581–2586

    Article  CAS  Google Scholar 

  • Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO\( _{2} \) -based materials. Chem Rev 116(10):5987–6041

    Article  CAS  PubMed  Google Scholar 

  • Muñoz A, de la Calle C, Alonso J, Botta P, Pardo V, Baldomir D, Rivas J (2008) Crystallographic and magnetic structure of SrCoO\(_{2.5}\) brownmillerite: neutron study coupled with band-structure calculations. Phys Rev B 78(5):054404

    Article  Google Scholar 

  • Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO\(_{3-\delta }\)-based mixed conductors. Solid State Ion 177(39–40):3433–3444

    Article  CAS  Google Scholar 

  • Nakamura T, Misono M, Yoneda Y (1982) Catalytic properties of perovskite-type mixed oxides, La\( _{1-x} \)Sr\( _{x} \)CoO\( _{3} \). Bull Chem Soc Japan 55:394–399

    Article  CAS  Google Scholar 

  • Narayanan AM, Umarji AM (2019) Optimization of absorption/desorption parameters of brownmillerite SrCoO\( _{2.5} \) for oxygen storage. J Alloys Compounds 803:102–110

    Article  CAS  Google Scholar 

  • Narayanan AM, Parasuraman R, Umarji AM (2018) Stabilization of brownmillerite-type SrCoO\( _{2.5} \) by a cost-effective quenching method for oxygen-scavenging applications. Indus Eng Chem Res 57(43):14749–14757

    Article  CAS  Google Scholar 

  • van der PAUW LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13(1):1–9

    Google Scholar 

  • Popov M, Starkov I, Bychkov S, Nemudry A (2014) Improvement of Ba\( _{0.5} \)Sr\( _{0.5} \)Co\( _{0.8} \)Fe\( _{0.2} \)O\(_{3-\delta }\) functional properties by partial substitution of cobalt with tungsten. J Memb Sci 469:88–94

    Article  CAS  Google Scholar 

  • San Pio M, Martini M, Gallucci F, Roghair I, van Sint Annaland M (2018) Kinetics of CuO/SiO\(_{2}\) and CuO/Al\(_{2}\)O\(_{3}\) oxygen carriers for chemical looping combustion. Chem Eng Sci 175:56–71

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9(7):671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunarso J, Baumann S, Serra J, Meulenberg W, Liu S, Lin Y, Da Costa JD (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Memb Sci 320(1–2):13–41

    Article  CAS  Google Scholar 

  • Sunarso J, Hashim SS, Zhu N, Zhou W (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Progress Energy Combust Sci 61:57–77

    Article  Google Scholar 

  • Teraoka Y, Zhang HM, Yamazoe N (1985) Oxygen-sorptive properties of defect perovskite-type La\(_{1-x}\)Sr\(_{x}\)Co\(_{1-y}\)Fe\(_{y}\)O\(_{3-\delta }\). Chem Lett 14(9):1367–1370

    Article  Google Scholar 

  • Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549

    Article  CAS  Google Scholar 

  • Wisgerhof E, Geus JW (1984) Morphology and X-ray diffraction pattern of dihydrates of cobalt (ii) oxalate. Mater Res Bull 19(12):1591–1598

    Article  CAS  Google Scholar 

  • Wu HC, Lin Y (2017) Effects of oxygen vacancy order-disorder phase transition on air separation by perovskite sorbents. Indus Eng Chem Res 56(20):6057–6064

    Article  CAS  Google Scholar 

  • Yang Z, Lin Y, Zeng Y (2002) High-temperature sorption process for air separation and oxygen removal. Indus Eng Chem Res 41(11):2775–2784

    Article  CAS  Google Scholar 

  • Yoo CY, Park JH, Yun DS, Lee YA, Yun KS, Lee JH, Yoon H, Joo JH, Yu JH (2016) Unraveling crystal structure and transport properties of fast ion conducting SrCo\(_{0. 9}\)Nb\(_{0. 1}\)O\(_{3-\delta }\). J Phys Chem C 120(39):22248–22256

    Article  CAS  Google Scholar 

  • Zhang J, Zheng H, Malliakas CD, Allred JM, Ren Y, Li Q, Han TH, Mitchell J (2014) Brownmillerite Ca\( _{2} \)Co\( _{2} \)O\( _{5} \): synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem Mater 26(24):7172–7182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Supercomputer Education and Research Centre (SERC), IISc for the access of LabVIEW 7 program. A.M.N. acknowledges Council of Scientific and Industrial Research (CSIR), Govt. of India for the financial support in the form of Junior and Senior Research Fellowship. Authors acknowledge Advanced Facility for Microscopy and Microanalysis, IISc for providing SEM facility. The funding from FIST for XRD and dilatometry facilities is acknowledged.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

AMU contributed to conception and supervision; AMN contributed to experimentation, analysis and interpretation of the results, drafting of original manuscript. All authors have read and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Aswathy M. Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, A.M., Umarji, A.M. Effect of oxygen diffusion path radii on the oxygen intake/release properties of Brownmillerite SrCoO\( _{2.5} \). Chem. Pap. 75, 3241–3251 (2021). https://doi.org/10.1007/s11696-021-01555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01555-5

Keywords

Navigation