Effect of oxygen diffusion path radii on the oxygen intake/release properties of Brownmillerite SrCoO\( _{2.5} \)

Abstract

Chemical modification has been proved to be an effective way to tune various material properties. Herein, the oxygen intake/release properties of substituted Sr\( _{1-x} \)M\( _{x} \)CoO\( _{2.5} \) (M = Ca, Ba, x = 0.02 (2 at. %), 0.05 (5 at. %), 0.1 (10 at. %), and 0.2 (20 at. %)) are explored. The substitution range was limited to the stability range of the brownmillerite structure. Phase purity and the unit cell expansion/contraction by substitution were confirmed by X-ray diffraction. The oxygen intake/release of the substituted samples was characterized by a custom-built volumetric apparatus and iodometric titration. Thermal expansion coefficient and electrical conductivity measurements were carried out on substituted samples. The reversible oxygen intake/release was found to decrease with both Ba and Ca substitution, even though a reduction in activation energy by Ba substitution was observed. This is correlated with an increased bond dissociation energy and a drastic decrease in critical radius of the bottle neck through which oxide ion migration occurs, especially with Ba substitution.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

Data are available from the corresponding author on request.

References

  1. Aguadero A, Pérez-Coll D, Alonso J, Skinner S, Kilner J (2012) A new family of Mo-doped SrCoO\(_{3-\delta }\) perovskites for application in reversible solid state electrochemical cells. Chem Mater 24(14):2655–2663

    CAS  Article  Google Scholar 

  2. Beppu K, Hosokawa S, Shibano T, Demizu A, Kato K, Wada K, Asakura H, Teramura K, Tanaka T (2017) Enhanced oxygen-release/storage properties of Pd-loaded Sr\(_{3}\)Fe\(_{2}\)O\(_{7-\delta }\). Phys Chem Chem Phys 19(21):14107–14113

    CAS  PubMed  Article  Google Scholar 

  3. de la Calle C, Aguadero A, Alonso J, Fernández-Díaz M (2008) Correlation between reconstructive phase transitions and transport properties from SrCoO\(_{2.5}\) brownmillerite: a neutron diffraction study. Solid State Sci 10(12):1924–1935

    Article  CAS  Google Scholar 

  4. De la Calle C, Alonso J, Aguadero A, Fernández-Díaz M (2009) Phase transformations in Sr\(_{0.8}\)Ba\(_{0.2}\)CoO\(_{2.5}\) brownmillerite: correlation between structure and transport properties. Dalton Trans 21:4104–4114

    Article  CAS  Google Scholar 

  5. Cook RL, Sammells AF (1991) On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells. Solid State Ion 45(3–4):311–321

    CAS  Article  Google Scholar 

  6. Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee YL, Morgan D, Christen HM, Bluhm H, Shao-Horn Y (2012) Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci 5(3):6081–6088

    CAS  Article  Google Scholar 

  7. Darwent Bd (1970) National Bureau of Standards, US

  8. Di Monte R, Kašpar J (2005) Heterogeneous environmental catalysis – a gentle art: CeO\( _{2} \) - ZrO\( _{2} \) mixed oxides as a case history. Catal Today 100(1–2):27–35

    Article  CAS  Google Scholar 

  9. Fergus JW (2007) Perovskite oxides for semiconductor-based gas sensors. Sens Actuators B: Chem 123(2):1169–1179

    CAS  Article  Google Scholar 

  10. Gaczynski P, Harpf A, Böer J, Kircheisen R, Kriegel R, Becker KD (2018) 57fe mössbauer study into oxygen vacancy disorder in (Ba\( _{0.5} \)Sr\( _{0.5} \))(Co\( _{0.8} \)Fe\( _{0.2} \))O\(_{3-\delta }\). Solid State Ion 316:59–65

    CAS  Article  Google Scholar 

  11. Geffroy PM, Blond E, Richet N, Chartier T (2017) Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane. Chem Eng Sci 162:245–261

    CAS  Article  Google Scholar 

  12. Guntuka S, Banerjee S, Farooq S, Srinivasan M (2008) A-and B-site substituted lanthanum cobaltite perovskite as high temperature oxygen sorbent 1. thermogravimetric analysis of equilibrium and kinetics. Indus Eng Chem Res 47(1):154–162

    CAS  Article  Google Scholar 

  13. Huang X, Ni C, Zhao G, Irvine JT (2015) Oxygen storage capacity and thermal stability of the CuMnO\( _{2} \)-CeO\( _{2} \) composite system. J Mater Chem A 3(24):12958–12964

    CAS  Article  Google Scholar 

  14. Ikeda H, Nikata S, Hirakawa E, Tsuchida A, Miura N (2016) Oxygen sorption/desorption behavior and crystal structural change for SrFeO\(_{3-\delta }\). Chem Eng Sci 147:166–172

    CAS  Article  Google Scholar 

  15. Jacobson A, Hutchison J (1980) An investigation of the structure of 12H BaCoO\( _{2.6} \) by electron microscopy and powder neutron diffraction. J Solid State Chem 35(3):334–340

    CAS  Article  Google Scholar 

  16. Jain S, Adiga K, Verneker VP (1981) A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combust Flame 40:71–79

    CAS  Article  Google Scholar 

  17. Jeen H, Choi WS, Biegalski MD, Folkman CM, Tung IC, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF, Lee HN (2013) Reversible redox reactions in an epitaxially stabilized SrCoO\(_{x}\) oxygen sponge. Nat Mater 12(11):1057

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Karppinen M, Matvejeff M, Salomäki K, Yamauchi H (2002) Oxygen content analysis of functional perovskite-derived cobalt oxides. J Mater Chem 12(6):1761–1764

    CAS  Article  Google Scholar 

  19. Karppinen M, Yamauchi H, Otani S, Fujita T, Motohashi T, Huang YH, Valkeapää M, Fjellvåg H (2006) Oxygen nonstoichiometry in YBaCo\( _{4} \)O\( _{7+\delta } \) : large low-temperature oxygen absorption/desorption capability. Chem Mater 18(2):490–494

    CAS  Article  Google Scholar 

  20. Kim JH, Manthiram A (2008) LnBaCo\( _{2} \)O\(_{5+\delta }\) oxides as cathodes for intermediate-temperature solid oxide fuel cells. J Electrochem Soc 155(4):B385–B390

    CAS  Article  Google Scholar 

  21. Lekse JW, Natesakhawat S, Alfonso D, Matranga C (2014) An experimental and computational investigation of the oxygen storage properties of BaLnFe\( _{2} \)O\( _{5+\delta } \) and BaLnCo\( _{2} \)O\( _{5+\delta } \) (Ln= La, Y) perovskites. J Mater Chem A 2(7):2397–2404

    CAS  Article  Google Scholar 

  22. Liu S, Tan X, Shao Z, Diniz da Costa JC (2006) Ba\( _{0.5} \)Sr\( _{0.5} \)Co\( _{0.8} \)Fe\( _{0.2} \)O\(_{3-\delta }\) ceramic hollow-fiber membranes for oxygen permeation. AIChE J 52(10):3452–3461

    CAS  Article  Google Scholar 

  23. Liu Y, Tan X, Li K (2006) Mixed conducting ceramics for catalytic membrane processing. Catal Rev 48(02):145–198

    CAS  Article  Google Scholar 

  24. Miura N, Murae H, Kusaba H, Tamaki J, Sakai G, Yamazoe N (1999) Oxygen permeability and phase transformation of Sr\(_{0.9}\)Ca\(_{0.1}\)CoO\(_{2.5 + \delta }\). J Electrochem Soc 146(7):2581–2586

    CAS  Article  Google Scholar 

  25. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO\( _{2} \) -based materials. Chem Rev 116(10):5987–6041

    CAS  PubMed  Article  Google Scholar 

  26. Muñoz A, de la Calle C, Alonso J, Botta P, Pardo V, Baldomir D, Rivas J (2008) Crystallographic and magnetic structure of SrCoO\(_{2.5}\) brownmillerite: neutron study coupled with band-structure calculations. Phys Rev B 78(5):054404

    Article  CAS  Google Scholar 

  27. Nagai T, Ito W, Sakon T (2007) Relationship between cation substitution and stability of perovskite structure in SrCoO\(_{3-\delta }\)-based mixed conductors. Solid State Ion 177(39–40):3433–3444

    CAS  Article  Google Scholar 

  28. Nakamura T, Misono M, Yoneda Y (1982) Catalytic properties of perovskite-type mixed oxides, La\( _{1-x} \)Sr\( _{x} \)CoO\( _{3} \). Bull Chem Soc Japan 55:394–399

    CAS  Article  Google Scholar 

  29. Narayanan AM, Umarji AM (2019) Optimization of absorption/desorption parameters of brownmillerite SrCoO\( _{2.5} \) for oxygen storage. J Alloys Compounds 803:102–110

    CAS  Article  Google Scholar 

  30. Narayanan AM, Parasuraman R, Umarji AM (2018) Stabilization of brownmillerite-type SrCoO\( _{2.5} \) by a cost-effective quenching method for oxygen-scavenging applications. Indus Eng Chem Res 57(43):14749–14757

    CAS  Article  Google Scholar 

  31. van der PAUW LJ (1958) A method of measuring specific resistivity and hall effect of discs of arbitrary shape. Philips Res Rep 13(1):1–9

    Google Scholar 

  32. Popov M, Starkov I, Bychkov S, Nemudry A (2014) Improvement of Ba\( _{0.5} \)Sr\( _{0.5} \)Co\( _{0.8} \)Fe\( _{0.2} \)O\(_{3-\delta }\) functional properties by partial substitution of cobalt with tungsten. J Memb Sci 469:88–94

    CAS  Article  Google Scholar 

  33. San Pio M, Martini M, Gallucci F, Roghair I, van Sint Annaland M (2018) Kinetics of CuO/SiO\(_{2}\) and CuO/Al\(_{2}\)O\(_{3}\) oxygen carriers for chemical looping combustion. Chem Eng Sci 175:56–71

    CAS  Article  Google Scholar 

  34. Schneider CA, Rasband WS, Eliceiri KW (2012) Nih image to imagej: 25 years of image analysis. Nat Methods 9(7):671

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Sunarso J, Baumann S, Serra J, Meulenberg W, Liu S, Lin Y, Da Costa JD (2008) Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Memb Sci 320(1–2):13–41

    CAS  Article  Google Scholar 

  36. Sunarso J, Hashim SS, Zhu N, Zhou W (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor: a review. Progress Energy Combust Sci 61:57–77

    Article  Google Scholar 

  37. Teraoka Y, Zhang HM, Yamazoe N (1985) Oxygen-sorptive properties of defect perovskite-type La\(_{1-x}\)Sr\(_{x}\)Co\(_{1-y}\)Fe\(_{y}\)O\(_{3-\delta }\). Chem Lett 14(9):1367–1370

    Article  Google Scholar 

  38. Toby BH, Von Dreele RB (2013) GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J Appl Crystallogr 46(2):544–549

    CAS  Article  Google Scholar 

  39. Wisgerhof E, Geus JW (1984) Morphology and X-ray diffraction pattern of dihydrates of cobalt (ii) oxalate. Mater Res Bull 19(12):1591–1598

    CAS  Article  Google Scholar 

  40. Wu HC, Lin Y (2017) Effects of oxygen vacancy order-disorder phase transition on air separation by perovskite sorbents. Indus Eng Chem Res 56(20):6057–6064

    CAS  Article  Google Scholar 

  41. Yang Z, Lin Y, Zeng Y (2002) High-temperature sorption process for air separation and oxygen removal. Indus Eng Chem Res 41(11):2775–2784

    CAS  Article  Google Scholar 

  42. Yoo CY, Park JH, Yun DS, Lee YA, Yun KS, Lee JH, Yoon H, Joo JH, Yu JH (2016) Unraveling crystal structure and transport properties of fast ion conducting SrCo\(_{0. 9}\)Nb\(_{0. 1}\)O\(_{3-\delta }\). J Phys Chem C 120(39):22248–22256

    CAS  Article  Google Scholar 

  43. Zhang J, Zheng H, Malliakas CD, Allred JM, Ren Y, Li Q, Han TH, Mitchell J (2014) Brownmillerite Ca\( _{2} \)Co\( _{2} \)O\( _{5} \): synthesis, stability, and re-entrant single crystal to single crystal structural transitions. Chem Mater 26(24):7172–7182

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Supercomputer Education and Research Centre (SERC), IISc for the access of LabVIEW 7 program. A.M.N. acknowledges Council of Scientific and Industrial Research (CSIR), Govt. of India for the financial support in the form of Junior and Senior Research Fellowship. Authors acknowledge Advanced Facility for Microscopy and Microanalysis, IISc for providing SEM facility. The funding from FIST for XRD and dilatometry facilities is acknowledged.

Funding

Not applicable

Author information

Affiliations

Authors

Contributions

AMU contributed to conception and supervision; AMN contributed to experimentation, analysis and interpretation of the results, drafting of original manuscript. All authors have read and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Aswathy M. Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayanan, A.M., Umarji, A.M. Effect of oxygen diffusion path radii on the oxygen intake/release properties of Brownmillerite SrCoO\( _{2.5} \). Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01555-5

Download citation

Keywords

  • Perovskite oxide
  • Brownmillerite
  • Oxygen non-stoichiometry
  • Mixed ion electron conductor