Novel n-octadecylcarboxamide CoPc: amperometric detections for bioanalytes using modified GCE

Abstract

Here, we are reporting cobalt(II) phthalocyanine (CoPc) containing the active catalyst for the electrochemical investigations of bioanalytes. The synthesized tetra-n-octadecylcarboxamide cobalt(II) phthalocyanine was characterized by FT-IR, UV, TGA, mass and powder XRD analysis. In the present work, the synthesized complex was characterized by cyclic voltammetry and shows the redox behaviour corresponding to central metal (Co+II/Co+I) of the complex. Three biomolecules are well separated by their oxidation peaks in simultaneous detections of AA, DA and UA at 170, 350 and 550 mV with increasing high positive peak current. The low detection limit of AA, DA and UA was 40, 30 and 30 µmol by CV methods. The modified tetra substituted CoODAPc/GCE exhibits an excellent electrocatalytic activity, stability, high sensitivity, good linearity and selectivity without losing its catalytic activity and proves to be a versatile chemical sensor for commercial pharmaceutical samples, vitamin C tablets and dopamine injections.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alarcon-Angeles G, Perez-Lopez B, Palomar-Pardave M, Ramırez-Silva MT, Alegret S, Merkoci A (2008) Enhanced host–guest electrochemical recognition of dopamine using cyclodextrin in the presence of carbon nanotubes. Carbon 46:898–906

    CAS  Article  Google Scholar 

  2. Chen LX, Zheng JN, Wang AJ, Wu LJ, Chen JR, Feng JJ (2015) Facile synthesis of porous bimetallic alloyed PdAgnanoflowers supported on reduced graphene oxide for simultaneous detection of ascorbic acid, dopamine, and uric acid. J Anal 140:3183–3192

    CAS  Article  Google Scholar 

  3. Cheng HM, Qiu HX, Zhu ZW, Li MX, Shi ZJ (2012) Investigation of the electrochemical behavior of dopamine at electrodes modified with ferrocene-filled double-walled carbon nanotubes. J Electrochim Acta 63:83–88

    CAS  Article  Google Scholar 

  4. Colín-Orozco E, Corona-Avendaño S, Ramírez-Silva MT, Romero-Romo M, Palomar-Pardavé M (2012) On the electrochemical oxidation of dopamine, ascorbic acid and uric acid onto a bare carbon paste electrode from a 0.1 M NaCl aqueous solution at pH 7. Int J Electrochem Sci 7:6097–6105

    Google Scholar 

  5. Ensafi Ali A, Taei M, Khayamian T (2009) A differential pulse voltammetric method for simultaneous determination of ascorbic acid, dopamine, and uric acid using poly (3-(5-chloro-2-hydroxyphenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic acid) film modified glassy carbon electrode. J Electroanal Chem 633:212–220

    Article  Google Scholar 

  6. Fabio RC, Leticia BF, Aldo JGZ, Márcio FB, Luiz HM-J (2017) Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sens Actuators B chem 243:43–50

    Article  Google Scholar 

  7. Huiying X, Jingjing X, Ling Y, Zhu L, Baohong L (2006) An electrochemical sensor for selective detection of dopamine based on nickel tetrasulfonated phthalocyanine functionalized nitrogen-doped graphene nanocomposites. J Electroanal Chem 779:92–98

    Google Scholar 

  8. Jilani BS, Mounesh MP, Mruthyunjayachari CD, Venugopala Reddy KR (2020) Cobalt(II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: a voltammetric study. Mater Chem Phys 239:121920

    CAS  Article  Google Scholar 

  9. Jilani BS, Mruthyunjayachari CD, Malathesh P, Mounesh STM, Venugopala Reddy KR (2019) Electrochemical sensing based MWCNT-Cobalt tetra substituted sorbaamide phthalocyanine onto the glassy carbon electrode towards the determination of 2-amino phenol: a voltammetric study. Sens Actuators B Chem 301:127078

    Article  Google Scholar 

  10. Łuczak T (2008) Preparation and characterization of the dopamine film electrochemically deposited on gold template and its applications for dopamine sensing in aqueous solution. J Electrochim Acta 53:5725–5731

    Article  Google Scholar 

  11. Mounesh JBS, Malatesh P, Venugopala Reddy KR, Lokesh KS (2019a) Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs-decorated cobalt(II) phthalocyanine modified GCE. Microchem J 147:755–763

    CAS  Article  Google Scholar 

  12. Mounesh MP, Praveen Kumara NY, Jilani BS, Mruthyunjayachari CD, Venugopala Reddy KR (2019b) Synthesis and characterization of tetra-ganciclovir cobalt(II) phthalocyanine for electroanalytical applications of AA/DA/UA. J Heliyon 5:e01946

    CAS  Article  Google Scholar 

  13. Mounesh Sharan Kumar TM, Praveen Kumar NY, Venugopal Reddy KR (2020) Poly (L-lactide)-carboxamide-CoPc with composite MWCNTs on glassy carbon electrode sensitive detection of hydrazine and L-cysteine. Anal Chem Lett 10(5):620–635

    Article  Google Scholar 

  14. Mounesh Venugopala Reddy KR (2020a) Detection of nanomolar concentrations H2O2 Using cobalt(II) phthalocyanine modified GCE with MWCNTs. Ana Chem Lett 10(1):33–48

    Article  Google Scholar 

  15. Mounesh Venugopala Reddy KR (2020b) Electrochemical investigation of modified GCE on carboxamide-PEG2-biotin-CoPc using composite MWCNTs: sensitive detection for glucose and hydrogen peroxide. New J Chem 44(8):3330–3340

    Article  Google Scholar 

  16. Mounesh Venugopala Reddy KR (2020c) Novel garnished cobalt(II) phthalocyanine with MWCNTs on modified GCE: sensitive and reliable electrochemical investigation of paracetamol and dopamine. New J Chem 44:16831–16844

    Article  Google Scholar 

  17. Mounesh Venugopala Reddy KR (2020d) Novel Tetracinnamide cobalt(II) phthalocyanine immobilized on MWCNTs for amperometic sensing of glucose. Anal Chem Lett 10(2):137–151

    Article  Google Scholar 

  18. Mounesh Venugopala Reddy KR (2020e) Sensitive and reliable electrochemical detection of nitrite and H2O2 Embellish-CoPc coupled with appliance of composite MWCNTs. Anal Chim Acta 1108:98–107

    Article  Google Scholar 

  19. Mounesh Venugopala Reddy KR (2021) Decorated CoPc with appliance of MWCNTs on GCE: sensitive and reliable electrochemical investigation of heavy metals. Microchem J 160:105610

    Article  Google Scholar 

  20. Saithip P, Johannes PM, Ditsayut P, Tanom L, Adisorn T (2014) Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. J Electrochim Acta 133:294–301

    Article  Google Scholar 

  21. Salimi A, Khezri M, Hallaj HR, Salimi A, MamKhezri H, Hallaj R (2006) Simultaneous determination of ascorbic acid, uric acid and neurotransmitters with a carbon ceramic electrode prepared by sol–gel technique. Talanta 70:823–832

    CAS  Article  Google Scholar 

  22. Sawada K, Duan W, Sekitani K, Satoh K (2005) Polymerization and complex formation of phthalocyanine substituted by trioxyethylene in solution. J Mol Liq 119:171–176

    CAS  Article  Google Scholar 

  23. Shaopeng Q, Bo Z, Heqing T, Xiaoqing J (2015) Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene. J Electrochim Acta 161:395–402

    Article  Google Scholar 

  24. Sleven J, Görller-Walrand C, Binnemans K (2001) Synthesis, spectral and mesomorphic properties of octa-alkoxy substituted phthalocyanine ligands and lanthanide complexes. Mater Sci Eng C 18:229–238

    Article  Google Scholar 

  25. Thiagarajan S, Chen SM (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. J Talanta 74:212–222

    CAS  Article  Google Scholar 

  26. Tsierkezos NG, Othman SH, Ritter U, Hafermann L, Knauer A, Köhler JM, Downing C, McCarthy EK (2016) Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes. Sens Actuators B 231:218–229

    CAS  Article  Google Scholar 

  27. Wang P, Li Y, Huang X, Wang L (2007) Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 73:431–437

    CAS  Article  Google Scholar 

  28. Wei Z, Wenjie Z, Shuang L, Huiyuan M, Chen W, Haijun P (2013) Fabrication and electrochemical sensing performance of a composite film containing a phosphovanadomolybdate and cobalt(II) tetrasulfonate phthalocyanine. Sens Actuators B 181:773–781

    Article  Google Scholar 

  29. Weibo L, Dongping Q, Yubin L, Ning B, Haiying G, Chunmei Y (2016) Fully-drawn pencil-on-paper sensors for electroanalysis of dopamine. J Electroanl Chem 769:72–79

    Article  Google Scholar 

  30. Weihua C, Ting L, Haijun D, Jianshan Y (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. J Sens Actuators B 193:492–500

    Article  Google Scholar 

  31. Yan J, Liu S, Zhang Z, He G, Zhou P, Liang H, Tian L, Zhou X, Jiang H (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd–Pt nanoparticles. J Colloid Surface B 111:392–397

    CAS  Article  Google Scholar 

  32. Yang YJ, Li WK (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. J Biosens Bioelectron 56:300–306

    CAS  Article  Google Scholar 

  33. Yanga Lu, Liua D, Huang J, Youa T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sens Actuators B 193:166–172

    Article  Google Scholar 

  34. Yu D, Zeng Y, Qi Y, Zhou T, Shi G (2012) A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite. Biosens Bioelectron 8:270–277

    Article  Google Scholar 

  35. Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. J Biosens Bioelectron 86:119–126

    Article  Google Scholar 

  36. Zheng Y, Huang Z, Zhao C, Weng S, Zheng W, Lin X (2013) A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180:537–544

    CAS  Article  Google Scholar 

  37. Zucolotto V, Ferreira M, Cordeiro MR, Constantino CJL, Moreira WC, Oliveira ON (2006) Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sens Actuators B Chem 113:809–815

    CAS  Article  Google Scholar 

  38. Zuo X, Zhang H, Nan L (2012) An electrochemical biosensor for determination of ascorbic acid by cobalt(II) phthalocyanine—multi-walled carbon nanotubes modified glassy carbon electrode. J Sens Actuators B Chem 161:1074–1079

    CAS  Article  Google Scholar 

Download references

Acknowledgement

One of the authors Mounesh thankful for financially support by the Vijayanagara Sri Krishnadevaraya University SC.ST fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mounesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2860 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mounesh, Venugopal Reddy, K.R. & Nagaraja, O. Novel n-octadecylcarboxamide CoPc: amperometric detections for bioanalytes using modified GCE. Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01547-5

Download citation

Keywords

  • Sensors
  • Ascorbic acid
  • DCC
  • GCE
  • DA
  • UA
  • CoPc