Synthesis of Fe3Se4/carbon composites from different metal–organic frameworks and their comparative lithium/sodium storage performances

Abstract

Synthesis of transition metal selenides from metal–organic frameworks (MOFs) has become one of the common methods, and their structure and properties are depended upon the MOFs. In this study, different Fe-based MOFs have been used to prepare Fe3Se4/carbon composites by synchronous selenization and carbonization process. The Fe3Se4/carbon composite obtained from Fe-Mil-88A possessing a rice-like structure is composed of numerous Fe3Se4 nanoparticles and abundant carbon, which has been observed by scanning/transmission electron microscope. X-ray photoelectron spectrums and thermogravimetric analysis indicate this Fe3Se4/carbon composite composed of major Fe2+ and minor Fe3+ has a carbon content of 12.4wt%. As anode material of lithium-ion battery, the composite can deliver a discharge capacity of 707.4 mAh/g at 0.2 A/g after 100 cycles. Even at a high rate of 5 A/g, it still reaches a capacity value of 566.7 mAh/g. As anode material of sodium-ion battery, this composite retains a discharge capacity of 417.3 mAh/g at 0.2 A/g after 50 cycles, and a capacity value of 153.4 mAh/g can be reached at a high rate of 5 A/g. The good electrochemical performances are partially determined by high contribution of capacitive-controlled behaviors from the investigation on cyclic voltammetry. The electrochemical performance of this composite is better than that of the other one, which is derived from Fe-Mil-88B. The different energy storage performances determined by their structural difference also have been discussed in the text.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Aguiar LW, Otto JP, Kupfer VL et al (2020) Simple, fast, and low-cost synthesis of MIL-100 and MIL-88B in a modified domestic microwave oven. Mater Lett 276:128127. https://doi.org/10.1016/j.matlet.2020.128127

    CAS  Article  Google Scholar 

  2. Ali Z, Asif M, Huang XX, Tang TY, Hou YL (2018) Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv Mater 30:1802745. https://doi.org/10.1002/adma.201802745

    CAS  Article  Google Scholar 

  3. Amaro-gahete J, Klee R, Esquivel D et al (2019) Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrason Sonochem 50:59–66. https://doi.org/10.1016/j.ultsonch.2018.08.027

    CAS  Article  PubMed  Google Scholar 

  4. Dai SR, Wang LC, Cao ML, Zhong ZC, Shen Y, Wang MK (2019) Design strategies in metal chalcogenides anode materials for high-performance sodium-ion battery. Mater Today Energy 12:114–128. https://doi.org/10.1016/j.mtener.2018.12.011

    Article  Google Scholar 

  5. Dang S, Zhu QL, Xu Q (2017) Nanomaterials derived from metal–organic frameworks. Nat Rev Mater 3:17075. https://doi.org/10.1038/natrevmats.2017.75

    CAS  Article  Google Scholar 

  6. Deng ZN, Jiang H, Li CZ (2018) 2D metal chalcogenides incorporated into carbon andtheir assembly for energy storage applications. Small 14:1800148. https://doi.org/10.1002/smll.201800148

    CAS  Article  Google Scholar 

  7. Ge P, Zhang CY, Hou HS, Mai LQ, Ji XB et al (2018) Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: the influences of electronic structure, morphology, electrochemical property. Nano Energy 48:617–629. https://doi.org/10.1016/j.nanoen.2018.04.018

    CAS  Article  Google Scholar 

  8. Hu Z, Liu QN, Chou SL, Dou SX (2017) Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater 29:1700606. https://doi.org/10.1002/adma.201700606

    CAS  Article  Google Scholar 

  9. Huang YX, Wang ZN, Jiang Y, Wu F, Chen RJ et al (2018) Hierarchical porous Co0.85Se@reduced graphene oxide ultrathin nanosheets with vacancy-enhanced kinetics as superior anodes for sodium-ion batteries. Nano Energy 53:524–535. https://doi.org/10.1016/j.nanoen.2018.09.010

    CAS  Article  Google Scholar 

  10. Indra A, Song T, Paik U (2018) Metal Organic Framework Derived Materials: progress and prospects for the energy conversion and storage. Adv Mater 30:1705146. https://doi.org/10.1002/adma.201705146

    CAS  Article  Google Scholar 

  11. Kong FJ, Lv LZ, Gu Y, Tao S, Qian B (2019) Nano-sized FeSe2 anchored on reduced graphene oxide as a promising anode material for lithium-ion and sodium-ion batteries. J Mater Sci 54:4225–4235. https://doi.org/10.1007/s10853-018-3143-1

    CAS  Article  Google Scholar 

  12. Li D, Zhou JS, Chen XH, Song HH (2018) Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl Mater Interface 10:22841–22850. https://doi.org/10.1021/acsami.8b06318

    CAS  Article  Google Scholar 

  13. Lin J, Zeng CH, Lin XM, Reddy R, Niu JL, Liu JC, Cai YP (2019) Trimetallic MOF-derived Cu0.39Zn0.14Co2.47O4-CuO interwoven with carbon nanotubes on copper foam for superior lithium storage with boosted kinetics. ACS Sustainable Chem Eng 7:15684–15695. https://doi.org/10.1021/acssuschemeng.9b03744

    CAS  Article  Google Scholar 

  14. Liu JD, Liang JJ, Wang CY, Ma JM (2018a) Electrospun CoSe@N-doped carbon nanofibers with highly capacitive Li storage. J Energy Chem 33:160–166. https://doi.org/10.1016/j.jechem.2018.09.006

    Article  Google Scholar 

  15. Liu ST, Li D, Zhang GJ, Sun DD, Zhou JS, Song HH (2018b) Two-dimensional NiSe2/N-Rich carbon nanocomposites derived from Ni-hexamine frameworks for superb Na-ion storage. ACS Appl Mater Interfaces 40:34193–34201. https://doi.org/10.1021/acsami.8b10635

    CAS  Article  Google Scholar 

  16. Liu TZ, Li YP, Zhao LZ, Zheng FH, Yang CH et al (2019) In situ fabrication of carbon-encapsulated Fe7X8 (X = S, Se) for enhanced sodium storage. ACS Appl Mater Interface 11:19040–19047. https://doi.org/10.1021/acsami.9b00500

    CAS  Article  Google Scholar 

  17. Luo MH, Yu HX, Hu FY, Bai Y, Su J et al (2020) Metal selenides for high performance sodium ion batteries. Chem Eng J 380:122557. https://doi.org/10.1016/j.cej.2019.122557

    CAS  Article  Google Scholar 

  18. Lv CX, Liu HL, Li DH, Chen S, Zhang HW, She XL, Guo XX et al (2019) Ultrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage. Carbon 143:106–115. https://doi.org/10.1016/j.carbon.2018.10.091

    CAS  Article  Google Scholar 

  19. Ma QN, Zhuang QY, Song H, Mao CM, Li GC et al (2018) Large-scale synthesis of Fe3Se4/C composites assembled by aligned nanorods as advanced anode material for lithium storage. Mater Lett 228:235–238. https://doi.org/10.1016/j.matlet.2018.06.014

    CAS  Article  Google Scholar 

  20. Prahas D, Kartika Y, Indraswati N, Ismadji S (2008) Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem Eng J 140:32–42. https://doi.org/10.1016/j.cej.2007.08.032

    CAS  Article  Google Scholar 

  21. Wang FM, Li YC, Shifa TA, Wang QS, He J (2016) Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew Chem Int Ed 55:6919–6924. https://doi.org/10.1002/anie.201602802

    CAS  Article  Google Scholar 

  22. Wang JS, Liu J, Zhang B, Ji X, Miao L, Jiang JJ (2017) The mechanism of hydrogen adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. Phys Chem Chem Phys 19:10125–10132. https://doi.org/10.1039/-C7CP00636E

    CAS  Article  PubMed  Google Scholar 

  23. Wang BB, Zhang SP, Wang G, Wang H, Bai JT (2019a) The morphology and electrochemical properties of porous Fe2O3@C and FeS@C nanofibers as stable and high-capacity anodes for lithium and sodium storage. J Colloid Interface Sci 557:216–226. https://doi.org/10.1016/j.jcis.2019.08.071

    CAS  Article  PubMed  Google Scholar 

  24. Wang FB, Li GD, Cui WF (2019b) FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. J Nanopart Res 21:121. https://doi.org/10.1007/s11051-019-4565-7

    CAS  Article  Google Scholar 

  25. Wu XL, Zhao HQ, Xu JM, Wang Y, Li XJ (2019) Facile synthesis of MOFs derived Fe7S8/C composites for high capacity and long-life rechargeable lithium/sodium batteries. Appl Surf Sci 492:504–512. https://doi.org/10.1016/j.apsusc.2019.06.217

    CAS  Article  Google Scholar 

  26. Xu XJ, Liu J, Liu JW, Hu RZ, Zhu M et al (2018) A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv Func Mater 28:1707573. https://doi.org/10.1002/adfm.201707573

    CAS  Article  Google Scholar 

  27. Yang J, Gao HC, Men S, Kang XW, Chen SW et al (2018) CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci 5:1800763. https://doi.org/10.1002/advs.201800763

    CAS  Article  Google Scholar 

  28. Ye WK, Wang K, Yin WH, Chai WW, Tang BH, Rui YC (2019) Rodlike FeSe2/C derived from metal organic gel wrapped with reduced graphene as an anode material with excellent performance for lithium-ion batteries. Electrochim Acta 323:134817. https://doi.org/10.1016/j.electacta.2019.134817

    CAS  Article  Google Scholar 

  29. Yu FQ, Li YL, Jia M, Zhang H, Shen Q (2017) Elaborate construction and electrochemical properties of lignin-derived macro-/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: the effect of sulfur-loading time. J Alloys Compd 706:677–685. https://doi.org/10.1016/j.jallcom.2017.03.204

    CAS  Article  Google Scholar 

  30. Yu QY, Jiang B, Hu J, Gao YZ, Suo GQ (2018) Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: a flexible framework for high-performance potassium-ion batteries. Adv Sci 5:1800782. https://doi.org/10.1002/advs.201800782

    CAS  Article  Google Scholar 

  31. Zhang H, Yu FQ, Kang WP, Shen Q (2015) Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries. Carbon 95:354–363. https://doi.org/10.1016/j.carbon.2015.08.050

    CAS  Article  Google Scholar 

  32. Zhang Y, Zhou Q, Zhu JX, Yan QY, Dou SX, Sun WP (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Funct Mater 27:1702317. https://doi.org/10.1002/adfm.201702317

    CAS  Article  Google Scholar 

  33. Zhang DM, Jia JH, Yang CC, Jiang Q (2020) Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries. Energy Storage Mater 24:439–449. https://doi.org/10.1016/j.ensm.2019.07.017

    Article  Google Scholar 

  34. Zhao CH, Liu R, Liu XR, Wang XX, Feng F, Shen Q (2013) Sacrificed template synthesis of Li1.2Ni0.13Co0.13Mn0.54O2 spheres for lithium-ion battery cathodes. J Nanopart Res 15:2064. https://doi.org/10.1007/s11051-013-2064-9

    CAS  Article  Google Scholar 

  35. Zhao SQ, Wang ZW, Li Y, Wang S, Shen Q, Lin ZQ (2019) A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide. Adv Energy Mater 9:1901093. https://doi.org/10.1002/aenm.201901093

    CAS  Article  Google Scholar 

  36. Zhao CH, Shen Z, Tu FZ, Hu ZB (2020) Template directed hydrothermal synthesis of flowerlike NiSex/C composites as lithium/sodium ion battery anodes. J Mater Sci 55:3495–3506. https://doi.org/10.1007/s10853-019-04200-5

    CAS  Article  Google Scholar 

  37. Zhong M, Kong LJ, Li N, Liu YY, Zhu J, Bu XH (2019) Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries. Coordin Chem Rev 388:172–201. https://doi.org/10.1016/j.ccr.2019.02.029

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial supports from the Scientific Start Foundation of LongYan University (LB2014001), from Science and Technology Project of Longyan (2017LY89), and from the Natural Science Foundation of Fujian Province (2018J01502, 2019J01800).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chenhao Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Zhao, C., Hu, Z. et al. Synthesis of Fe3Se4/carbon composites from different metal–organic frameworks and their comparative lithium/sodium storage performances. Chem. Pap. 75, 2737–2747 (2021). https://doi.org/10.1007/s11696-021-01524-y

Download citation

Keywords

  • Fe3se4/carbon composites
  • Fe-based metal–organic frameworks
  • Lithium-ion battery anodes
  • Sodium-ion battery anodes