Microwave-assisted novel one-pot synthesis and characterization of copper oxide


Copper oxide (CuO), being a transition metal oxide, finds numerous applications in current science and technology. To tailor the different properties of CuO to meet the requirements of intended applications, recent research is focused on the exploration and utilization of various synthesis routes. Hence, there is huge scope for research in the rapid facile synthesis of CuO with desirable characteristics. This work presents the synthesis of CuO in one-step using a dedicated single-mode sealed-vessel microwave reactor. The relevant properties of synthesized CuO were evaluated by characterization studies such as nitrogen gas adsorption measurement, powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Altavilla C, Ciliberto E (2011) Inorganic nanoparticles: syntheis, applications, and perspectives. CRC Press, New York

    Google Scholar 

  2. Ameri B, Davarani SSH, Roshani R, Moazami HR, Tadjarodi A (2017) A flexible mechanochemical route for the synthesis of copper oxide nanorods/nanoparticles/nanowires for supercapacitor applications: the effect of morphology on the charge storage ability. J Alloys Compd 695:114–123. https://doi.org/10.1016/j.jallcom.2016.10.144

    CAS  Article  Google Scholar 

  3. Bhatta LKG, Bhatta UM, Susheel Kumar GSK, Venkatesh K (2019) An experimental study on thermal decomposition of microwave synthesized Cu2(OH)3Cl to copper oxide nanoparticles. Mater Res Express 6(12):1250j8. https://doi.org/10.1088/2053-1591/ab55b6

  4. Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2(8):1358–1374. https://doi.org/10.1039/b9nr00377k

    CAS  Article  PubMed  Google Scholar 

  5. Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4(4):559–566. https://doi.org/10.1016/j.eng.2018.06.001

    CAS  Article  Google Scholar 

  6. Gawande MB, Goswami A, Felpin FX, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS (2016) Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem Rev 116(6):3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482

    CAS  Article  PubMed  Google Scholar 

  7. Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9(4):1–14. https://doi.org/10.3390/ph9040075

    CAS  Article  Google Scholar 

  8. Kim DS, Kim JC, Kim BK, Kim DW (2016) One-pot low-temperature sonochemical synthesis of CuO nanostructures and their electrochemical properties. Ceram Int 42(16):19454–19460. https://doi.org/10.1016/j.ceramint.2016.09.044

    CAS  Article  Google Scholar 

  9. Liu X, Chen C, Zhao Y, Jia B (2013) A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. J Nanomater 2013:736375. https://doi.org/10.1155/2013/736375

    CAS  Article  Google Scholar 

  10. Merzlyak A, Lee SW (2006) Phage as templates for hybrid materials and mediators for nanomaterial synthesis. Curr Opin Chem Biol 10(3):246–252. https://doi.org/10.1016/j.cbpa.2006.04.008

    CAS  Article  PubMed  Google Scholar 

  11. Prasad R, Rattan G (2011) Preparation methods and applications of CuO-CeO2 catalysts: a short review. Bull Chem React Eng Catal 5(1):7–30. https://doi.org/10.9767/bcrec.5.1.774.7-30

    Article  Google Scholar 

  12. Sathiya SM (2017) Structural, optical and electrical properties of copper oxide nanoparticles prepared through microwave assistance. Adv Mater Proc 2(6):371–377. https://doi.org/10.5185/amp.2017/605

    Article  Google Scholar 

  13. Singh J, Rawat M (2016) A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J Bioelectron Nanotechnol. https://doi.org/10.13188/2475-224x.1000003

  14. Suleiman M, Mousa M, Hussein A, Hammouti B, Taibi B, Warad I (2013) Copper (II)-oxide nanostructures : synthesis, characterizations and their applications. Review 4(5):792–797

    CAS  Google Scholar 

  15. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    CAS  Article  Google Scholar 

  16. Veiga L, Garate O, Lloret P, Moina C, Ybarra G (2018) One-pot ultrafast microwave-assisted synthesis of copper and copper oxide nanoparticles. Int J Nanosci 18:1850034. https://doi.org/10.1142/S0219581X18500345

    CAS  Article  Google Scholar 

  17. Yadav S, Jain A, Malhotra P (2019) A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chem 21(5):937–955. https://doi.org/10.1039/c8gc03303j

    CAS  Article  Google Scholar 

  18. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60(1):208–337. https://doi.org/10.1016/j.pmatsci.2013.09.003

    CAS  Article  Google Scholar 

  19. Zhou Y (2006) Recent advances in ionic liquids for synthesis of inorganic nanomaterials. Curr Nanosci 1(1):35–42. https://doi.org/10.2174/1573413052953174

    Article  Google Scholar 

  20. Zoolfakar AS, Rani RA, Morfa AJ, O’Mullane AP, Kalantar-Zadeh K (2014) Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J Mater Chem C 2(27):5247–5270. https://doi.org/10.1039/c4tc00345d

    CAS  Article  Google Scholar 

Download references


The authors would like to thank Prof. PV Satyam, Institute of Physics, Bhubaneswar, for helping in electron microscopy measurements.

Author information



Corresponding author

Correspondence to Lakshminarayana Kudinalli Gopalakrishna Bhatta.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhatta, L.K.G., Gundanna, S.K., Venkatesh, K. et al. Microwave-assisted novel one-pot synthesis and characterization of copper oxide. Chem. Pap. (2021). https://doi.org/10.1007/s11696-021-01511-3

Download citation


  • Copper oxide
  • Microwave reactor
  • Characterization
  • One-pot synthesis