Synthesis and antioxidant activity of monoterpene nitrobenzylidenesulfenimines

Abstract

Novel nitrobenzylidenesulfenimines based on monoterpene hydroxythiols were synthesized with yields of 51–84% for the first time. The obtained compounds showed high antioxidant and membrane-protective activities in in vitro models.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Acker CI, Brandão R, Rosário AR, Nogueira CW (2009) Antioxidant effect of alkynylselenoalcohol compounds on liver and brain of rats in vitro. Environ Toxicol Pharmacol 28:280–287. https://doi.org/10.1016/j.etap.2009.05.002

    CAS  Article  PubMed  Google Scholar 

  2. Asakawa T, Matsushita S (1980) Coloring conditions of thiobarbituric acid test for detecting lipid hydroperoxides. Lipids 15:137–140. https://doi.org/10.1007/BF02540959

    CAS  Article  Google Scholar 

  3. Banina OA, Sudarikov DV, Krymskaya YuV, Frolova LL, Kuchin AV (2015) Synthesis of chiral hydroxythiols based on oxygen-containing α- and β-pinene derivatives. Chem Nat Compd 51:261–265. https://doi.org/10.1007/s10600-015-1257-0

    CAS  Article  Google Scholar 

  4. Banina OA, Sudarikov DV, Slepukhin PA, Frolova LL, Kuchin AV (2016) Stereoselective synthesis of carane-type hydroxythiols and disulfides based on them. Chem Nat Compd 52:240–247. https://doi.org/10.1007/s10600-016-1605-8

    CAS  Article  Google Scholar 

  5. Bellé NAV, Dalmolin GD, Fonini G, Rubin MA, Rocha JBT (2004) Polyamines reduces lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008:245–251. https://doi.org/10.1016/j.brainres.2004.02.036

    CAS  Article  PubMed  Google Scholar 

  6. Buravlev EV, Shevchenko OG, Anisimov AA, Suponitsky KY (2018a) Novel Mannich bases of α- and γ-mangostins: Synthesis and evaluation of antioxidant and membrane-protective activity. Eur J Med Chem 152:10–20. https://doi.org/10.1016/j.ejmech.2018.04.022

    CAS  Article  PubMed  Google Scholar 

  7. Buravlev EV, Shevchenko OG, Chukicheva IY, Kutchin AV (2018b) Synthesis and membrane-protective properties of aminomethyl derivatives of quercetin at the C-8 position. Chem Pap 72:201–208. https://doi.org/10.1007/s11696-017-0272-y

    CAS  Article  Google Scholar 

  8. Chawla R, Arora R, Kumar R, Sharma A, Prasad J, Singh S, Sagar R, Chaudhary P, Shukla S, Kaur G, Sharma RK, Puri SC, Dhar KL, Handa G, Gupta VK, Qazi GN (2005) Antioxidant activity of fractionated extracts of rhizomes of high-altitude Podophyllum hexandrum: role in radiation protection. Mol Cell Biochem 273:193–208. https://doi.org/10.1007/s11010-005-0821-5

    CAS  Article  PubMed  Google Scholar 

  9. Davis FA (2006) Adventures in sulfur-nitrogen chemistry. J Org Chem 71:8993–9003. https://doi.org/10.1021/jo061027p

    CAS  Article  PubMed  Google Scholar 

  10. Davis FA, Slegeir WAR, Evans S, Schwartz A, Goff DL, Palmer R (1973) Chemistry of the sulfur-nitrogen bond. VI. Convenient one-step synthesis of sulfenimines (S-aryl thiooximes). J Org Chem 38:2809–2813. https://doi.org/10.1021/jo00956a016

    CAS  Article  Google Scholar 

  11. Diplock AT (1996) The Leon Golberg memorial lecture. Food Chem Toxicol 34:1013–1020. https://doi.org/10.1016/S0278-6915(96)00053-1

    CAS  Article  PubMed  Google Scholar 

  12. Dvornikova IA, Buravlev EV, Fedorova IV, Shevchenko OG, Chukicheva IYu, Kuchin AV (2019) Synthesis and antioxidant properties of hydroxycinnamic acid derivatives containing isobornyl substituents. Chem Nat Compd 55:658–664. https://doi.org/10.1007/s10600-019-02772-x

    CAS  Article  Google Scholar 

  13. Geronikaki A, Gavalas A (2006) Antioxidants and inflammatory disease: synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen 9:425–442. https://doi.org/10.2174/138620706777698481

    CAS  Article  PubMed  Google Scholar 

  14. Gyrdymova YUV, Demakova MYA, Shevchenko OG, Sudarikov DV, Frolova LL, Rubtsova SA, Kuchin AV (2017a) Synthesis and antioxidant activity of myrtanylthiotriazoles. Chem Nat Compd 53:895–900. https://doi.org/10.1007/s10600-017-2150-9

    CAS  Article  Google Scholar 

  15. Gyrdymova YV, Sudarikov DV, Shevchenko OG, Rubtsova SA, Slepukhin PA, Kutchin AV (2017b) Caryophyllane thiols, vinyl thioethers, di- and bis-sulfides: antioxidant and membrane protective activities. Chem Biodivers 14:e1700296. https://doi.org/10.1002/cbdv.201700296

    CAS  Article  Google Scholar 

  16. Gyrdymova YUV, Sudarikov DV, Shevchenko OG, Rubtsova SA, Slepukhin PA, Patov SA, Lakhvich FA, Pashkovskii FS, Kuchin AV (2018) Synthesis and antioxidant activity of new neomenthyl and caranyl thiotriazoles. Chem Nat Compd 54:883–888. https://doi.org/10.1007/s10600-018-2504-y

    CAS  Article  Google Scholar 

  17. Izmest’ev ES, Sudarikov DV, Rubtsova SA, Slepukhin PA, Kuchin AV (2012) Synthesis and reduction of new sulfinimines with isobornane structure. Russ J Org Chem 48:1407–1418. https://doi.org/10.1134/S1070428012110024

    CAS  Article  Google Scholar 

  18. Izmest’ev ES, Sudarikov DV, Shevchenko OG, Rubtsova SA, Kutchin AV (2015) The synthesis and membrane protective properties of sulfanyl imines derived from neomenthane and isobornane thiols. Russ J Bioorg Chem 41:77–82. https://doi.org/10.1134/S1068162014050070

    CAS  Article  Google Scholar 

  19. Martakov IS, Shevchenko OG, Torlopov MA, Gerasimov EYu, Sitnikov PA (2019) Formation of gallic acid layer on γ-AlOOH nanoparticles surface and their antioxidant and membrane-protective activity. J Inorg Biochem 199:110782. https://doi.org/10.1016/j.jinorgbio.2019.110782

    CAS  Article  PubMed  Google Scholar 

  20. Miki M, Tamai H, Mino M, Yamamoto Y, Niki E (1987) Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by α-tocopherol. Arch Biochem Biophys 258:373–380. https://doi.org/10.1016/0003-9861(87)90358-4

    CAS  Article  PubMed  Google Scholar 

  21. Samet AV, Shevchenko OG, Rusak VV, Chartov EM, Myshlyavtsev AB, Rusanov DA, Semenova MN, Semenov VV (2019) Antioxidant activity of natural allylpolyalkoxybenzene plant essential oil constituents. J Nat Prod 82:1451–1458. https://doi.org/10.1021/acs.jnatprod.8b00878

    CAS  Article  Google Scholar 

  22. Sasano Y, Kogure N, Nagasawa S, Kasabata K, Iwabuchi Y (2018) 2-Azaadamantane N-oxyl (AZADO)/Cu Catalysis enables chemoselective aerobic oxidation of alcohols containing electron-rich divalent sulfur functionalities. Org Lett 20:6104–6107. https://doi.org/10.1021/acs.orglett.8b02528

    CAS  Article  PubMed  Google Scholar 

  23. Silva VLM, Elguero J, Silva AMS (2018) Current progress on antioxidants incorporating the pyrazole core. Eur J Med Chem 156:394–429. https://doi.org/10.1016/j.ejmech.2018.07.007

    CAS  Article  PubMed  Google Scholar 

  24. Stefanello ST, Prestes AS, Ogunmoyole T, Salman SM, Schwab RS, Brender CR, Dornelles L, Rocha JBT, Soares FAA (2013) Evaluation of in vitro antioxidant effect of new mono and diselenides. Toxicol In Vitro 27:1433–1439. https://doi.org/10.1016/j.tiv.2013.03.001

    CAS  Article  PubMed  Google Scholar 

  25. Sudarikov DV, Krymskaya YuV, Il’chenko NO, Slepukhin PA, Rubtsova SA, Kutchin AV, (2018) Synthesis and biological activity of fluorine-containing amino derivatives based on 4-caranethiol. Russ Chem Bull 67:731–742. https://doi.org/10.1007/s11172-018-2130-7

    CAS  Article  Google Scholar 

  26. Sudarikov DV, Krymskaya YV, Shevchenko OG, Slepukhin PA, Rubtsova SA, Kutchin AV (2019) Synthesis and antioxidant activity of carane and pinane based sulfenimines and sulfinimines. Chem Biodivers 16:e1900413. https://doi.org/10.1002/cbdv.201900413

    CAS  Article  PubMed  Google Scholar 

  27. Takebayashi J, Chen J, Tai A (2010) A method for evaluation of antioxidant activity based on inhibition of free radical-induced erythrocyte hemolysis. In: Armstrong D (ed) Advanced protocols in oxidative stress II. Humana Press, Totowa, pp 287–296

    Google Scholar 

  28. Van den Berg JJM, Op den Kamp JAF, Lubin BH, Roelofsen B, Kuypers FA (1992) Kinetics and site specificity of hydroperoxide-induced oxidative damage in red blood cells. Free Radic Biol Med 12:487–498. https://doi.org/10.1016/0891-5849(92)90102-M

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Russian Foundation for Basic Research (Project 19-03-00951) using equipment from the Center for Collective Usage "Chemistry" of the Institute of Chemistry of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences. The study of antioxidant and membrane-protective activities was performed using the equipment of the Center of Collective Usage “Molecular Biology” of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences at the expense of the state assignment (project No. AAAA-A18-118011120004-5). The used animals were taken from the scientific collection of experimental animals from the Institute of Biology of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences (https://www.ckp-rf.ru/usu/471933/).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Denis V. Sudarikov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sudarikov, D.V., Krymskaya, Y.V., Melekhin, A.K. et al. Synthesis and antioxidant activity of monoterpene nitrobenzylidenesulfenimines. Chem. Pap. (2021). https://doi.org/10.1007/s11696-020-01362-4

Download citation

Keywords

  • Nitrobenzylidenesulfenimines
  • Monoterpene hydroxythiols
  • Antioxidant activity
  • Oxidative hemolysis
  • Red blood cells