Synthesis and properties of nanostructured Cr-doped hematite fibres

Abstract

Cr-doped α-Fe2O3 fibres were synthesized by combining electrospinning and the thermal treatment of electrospun composite fibres at 500 °C. XRD analysis showed the formation of solid solutions with a corresponding small decrease in the unit-cell volume due to a difference between the ionic radii of Fe3+ and Cr3+ cations. Mössbauer spectroscopy showed that the incorporation of Cr3+ into the α-Fe2O3 crystal structure induced a decrease in the hyperfine magnetic field. Doping of α-Fe2O3 with Cr3+ also influenced the shape and position of IR bands in relation to reference α-Fe2O3 fibres in the corresponding FT-IR spectra. The FE-SEM images of Cr-doped α-Fe2O3 fibres showed that they consisted of interconnected nanoparticles and possessed a hollow substructure. The photocatalytic degradation of rhodamine B using electrospun fibres was also investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Berry FJ, Greaves C, Helgason Ӧ, McManus J, Palmer HM, Williams RT (2000) Structural and magnetic properties of Sn-, Ti-, and Mg-substituted α-Fe2O3: a study by neutron diffraction and Mossbauer spectroscopy. J Solid State Chem 151:157–162. https://doi.org/10.1006/jssc.1999.8605

    CAS  Article  Google Scholar 

  2. Bouhjar F, Mollar M, Chourou ML, Mari B, Bessals B (2018) Hydrothermal synthesis of nanostructured Cr-doped hematite with enhanced photoelectrochemical activity. Electrochim Acta 260:838–846. https://doi.org/10.1016/j.electacta.2017.12.049

    CAS  Article  Google Scholar 

  3. Grygar T, Bezdička P, Dedeček J, Petrovsky E, Schneeweiss O (2003) Fe2O3–Cr2O3 system revised. Ceram Silik 47:32–39

    CAS  Google Scholar 

  4. Kleiman-Schwarsctein A, Hu Y-S, Forman AJ, Stucky GD, McFarland EN (2008) Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J Phys Chem C 112:15900–15907. https://doi.org/10.1021/jp803775j

    CAS  Article  Google Scholar 

  5. Kumar P, Sharma V, Singh JP, Kumar A, Chahal S, Sachdev K, Chae KH, Kumar A, Asokan K, Kanjilal D (2019) Investigations on magnetic and electrical properties of Zn doped Fe2O3 nanoparticles and their correlation with local electronic structures. J Magn Mater 489:165398. https://doi.org/10.1016/j.jmmm.2019.165398

    CAS  Article  Google Scholar 

  6. Lenglet M, Guillamet R, Lopitaux J, Hannoyer B (1990) Initial stages of oxidation of inconel 718 by FTIR spectroscopy. Mater Res Bull 25:715–722. https://doi.org/10.1016/0025-5408(90)90199-C

    CAS  Article  Google Scholar 

  7. Liu H, Luo S-H, Zhang D-X, Hu D-B, Yi T-F, Wang Z-Y, Zhang Y-H, Liu Y-G, Wang Q, Hao A-M, Liu X-W, Guo R (2019) A simple and low-cost method to synthesize Cr-doped α-Fe2O3 electrode materials for lithium-ion batteries. ChemElectroChem 6:856–864. https://doi.org/10.1002/celc.201801736

    CAS  Article  Google Scholar 

  8. Musić S, Popović S, Ristić M (1993) Chemical and structural properties of the system Fe2O3–Cr2O3. J Mater Sci 28:632–638. https://doi.org/10.1007/BF01151237

    Article  Google Scholar 

  9. Musić S, Lenglet M, Popović S, Hannoyer B, Czakó-Nagy I, Ristić M, Balzar D, Gashi F (1996) Formation and characterization of the solid solutions (CrxFe1x)2O3, 0≤x≤1. J Mater Sci 31:4067–4076. https://doi.org/10.1007/BF00352669

    Article  Google Scholar 

  10. Ocwieja M, Wegrzynowicz A, Maciejewska-Pronczuk J, Michorczyk P, Adamczyk Z, Roman M, Bielanska E (2017) Preparation of iron oxide nanoparticles doped by chromium for application in water–gas shift reaction. Colloids Surf A Physicochem Eng Asp 523:71–80. https://doi.org/10.1016/j.colsurfa.2017.04.004

    CAS  Article  Google Scholar 

  11. Onari S, Arai T, Kudo K (1977) Infrared lattice vibrations and dielectric dispersion in α-Fe2O3. Phys Rev B 16:1717–1721. https://doi.org/10.1103/PhysRevB.16.1717

    CAS  Article  Google Scholar 

  12. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific Publishing Co., Pte. Ltd., Singapore

    Google Scholar 

  13. Renneke DR, Lynch DW (1965) Infrared lattice vibrations and dielectric dispersion in single-crystal Cr2O3. Phys Rev 138:1961–1964. https://doi.org/10.1103/PhysRev.138.A530

    Article  Google Scholar 

  14. Ristić M, Kuzmann E, Homonnay Z, Musić S (2018) Synthesis and properties of 1D manganese-doped hematite particles. J Alloys Compd 767:504–511. https://doi.org/10.1016/j.jallcom.2018.07.115

    CAS  Article  Google Scholar 

  15. Scarano D, Zecchina A (1987) Adsorbate-adsorbent and adsorbate-adsorbate interactions in CO overlayers adsorbed on α-Cr203 as investigated by infrared spectroscopy. Spectrochim Acta Part A Mol Spectrosc 43:1441–1445. https://doi.org/10.1016/S0584-8539(87)80028-4

    Article  Google Scholar 

  16. Serna CJ, Rendon JL, Iglesias JE (1982) Infrared surface modes in corundum-type microcrystalline oxides. Spectrochim Acta Part A Mol Spectrosc 38:797–802. https://doi.org/10.1016/0584-8539(82)80070-6

    Article  Google Scholar 

  17. Serna CJ, Ocana M, Iglesias JE (1987) Optical properties of α-Fe2O3 microcrystals in the infrared. J Phys C Solid State Phys 20:473–484

    CAS  Article  Google Scholar 

  18. Shen S, Jiang J, Guo P, Kronawitter CX, Mao SS, Guo L (2012) Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes. Nano Energy 1:732–741. https://doi.org/10.1016/j.nanoen.2012.05.013

    CAS  Article  Google Scholar 

  19. Tsokov P, Blaskov V, Klissurski D, Tsolovski I (1993) Effect of mechanical activation on the synthesis of α-Fe2O3–Cr2O3 solid solutions. J Mater Sci 28:184–188. https://doi.org/10.1007/BF00349050

    CAS  Article  Google Scholar 

  20. Wang Y, Muramatsu A, Sugimoto T (1998) FTIR analysis of well-defined α-Fe2O3 particles. Colloids Surf A Physicochem Eng Asp 134:281–297. https://doi.org/10.1016/S0927-7757(97)00102-7

    CAS  Article  Google Scholar 

  21. Xue D, Zhou R, Lin X, Duan X, Li Q, Wang T (2019) A highly selective and sensitive H2S sensor at low temperatures based on Cr-doped α-Fe2O3 nanoparticles. RSC Adv 9:4150–4156. https://doi.org/10.1039/c8ra07365a

    CAS  Article  Google Scholar 

  22. Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L (2012) Facet-mediated photodegradation of organic dye over hematite architectures by visible light. Angew Chem 124:182–186. https://doi.org/10.1002/ange.201105028

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Croatian Science Foundation (Grant No. IP-2016-06-8254).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Svetozar Musić.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mira Ristić: Deceased.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Robić, M., Ristić, M., Marciuš, M. et al. Synthesis and properties of nanostructured Cr-doped hematite fibres. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01247-6

Download citation

Keywords

  • α-Fe2O3
  • Cr-doping
  • Electrospinning
  • XRD
  • FE-SEM
  • Spectroscopy
  • Photocatalysis