The inhibition action of some organic polymers on the corrosion carbon steel in acidic media

Abstract

Corrosion inhibition performance of three sodium polyacrylates polymers was analyzed for carbon steel type OLC 45 in 0.5 M H2SO4 solution. Effectiveness of this polymers were investigated by potentiostatic and potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and metallurgical microscopy techniques. The polymers involved in this study are three sodium polyacrylates hydrophobically modified with linear and cyclododecyl and, respectively, dihexyl chain (NaPADD, NaPACDD and NaPADH). We assume that, these polymers prevent corrosion of metal electrodes by a protective process can be due to either the adsorption of inhibitor molecules building a protective film or achievement an insoluble complex. Results showed that these polymers accomplished a considerable inhibiting action on OLC 45 corrosion and act that a mixed corrosion inhibitors and it could be proved by the effects of polymers on the electrochemical properties of metal electrodes. The adsorption of the polymers on the electrodes surface obeys to the Langmuir isotherm model. The temperature influence on the corrosion behavior of the metal electrodes in 0.5M H2SO4 with and without the inhibitor at 800 ppm was analyzed in the temperature domain from 293 to 333 K. The negative value of thermodynamic parameter like Gibbs free energy of adsorption shows the spontaneity of adsorption process. The characterization by FT-IR and SEM confirms the adsorption of inhibitors and the formation of corrosion products on the working electrode surface. EIS and potentiodynamic polarization data were indicative its corrosion protection ability. The best inhibition of 97% gets at an inhibitor concentration of 800 ppm for NaPACDD.

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Availability of data and material

My manuscript has not associated data or the data will not be deposited in a data repository.

References

  1. Abd-El-Naby BA, Abdullatef OA, Khamis E, El-Mahmody WA (2016) Effect of cetyltrimethylammonium bromide surfactant as novel inhibitor for the corrosion of steel in 0.5M H2SO4. Int J Electrochem Sci 11:1271

    CAS  Google Scholar 

  2. Abd El-Lateef HM, Soliman KA, Tantawy AH (2017) Novel synthesized Schiff base-based cationic gemini surfactants: electrochemical investigation, theoretical modeling and applicability as biodegradable inhibitors for mild steel against acidic corrosion. J Mol Liq 232:478–498. https://doi.org/10.1016/j.molliq.2017.02.105

    CAS  Article  Google Scholar 

  3. Amin MA, Abd-EL I-Rehim SS, El-Sherbini EEF, Hazzaz OA (2009) Polyacrylic acid as a corrosion inhibitor for aluminium in weakly alkaline solutions. Part I: weight loss, polarization, impedance EFM and EDX studies. Corros Sci 51:658–667. https://doi.org/10.1016/j.corsci.2008.12.008

    CAS  Article  Google Scholar 

  4. Ansari KR, Quraishi MA, Singh A (2015) Isatin derivatives as a non-toxic corrosion inhibitor for mild steel in 20% H2SO4. Corros Sci 95:62–70. https://doi.org/10.1016/j.corsci.2015.02.010

    CAS  Article  Google Scholar 

  5. Aricov L, Băran A, Simion EL, Gîfu IC, Anghel DF, Jerca VV, Vuluga DM (2016a) New insights into the self-assembling of some hydrophobically modified polyacrylates in aqueous solution. Colloid Polym Sci 294:667–679. https://doi.org/10.1007/s00396-015-3825-z

    CAS  Article  Google Scholar 

  6. Aricov L, Petkova H, Arabadzhieva D, Iovescu A, Mileva E, Khristov K, Stîngă G, Mihailescu CF, Anghel DF, Todorov R (2016b) Aqueous solutions of associative poly(acrylates): bulk and interfacial properties. Colloids Surf A Physicochem Eng Asp 505:138–149. https://doi.org/10.1016/j.colsurfa.2016.02.018

    CAS  Article  Google Scholar 

  7. Aricov L, Băran A, Stîngă G, Simion EL, Gîfu IC, Anghel DF, Rădiţoiu V (2017) Formation and hosting properties of polyacrylate–surfactant complexes. Colloid Polym Sci 295:1017–1038. https://doi.org/10.1007/s00396-017-4102-0

    CAS  Article  Google Scholar 

  8. Bahrami MJ, Hosseini SMA, Pilvar P (2010) Experimental and theoretical investigation of organic compounds as inhibitors for mild steel corrosion in sulfuric acid medium. Corros Sci 52:2793–2803. https://doi.org/10.1016/j.corsci.2010.04.024

    CAS  Article  Google Scholar 

  9. Bouklah M, Hammouti B, Lagrenée M, Bentiss F (2006) Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. Corros Sci 48:2831–2842. https://doi.org/10.1016/j.corsci.2005.08.019

    CAS  Article  Google Scholar 

  10. Branzoi V, Branzoi F (2002) Inhibiting effects of carbon steel corrosion by N-alkyl quaternary ammonium salts in hydrochloric acid solutions. Rev Roum Chim 47:1193

    CAS  Google Scholar 

  11. Branzoi F, Branzoi V (2016) Investigation of some nonionic surfactants as corrosion inhibitors for carbon steel in sulfuric acid medium. Int J Electrochem Sci 11:6564–6578. https://doi.org/10.20964/2017.08.27

    CAS  Article  Google Scholar 

  12. Branzoi F, Branzoi V (2017) Investigation of some nonionic surfactants as corrosion inhibitors for carbon steel in sulfuric acid medium. Int J Electrochem Sci 12:7638–7658. https://doi.org/10.20964/2017.08.27

    CAS  Article  Google Scholar 

  13. Branzoi F, Băran A (2019) The inhibition effect of some organic compounds on corrosion of brass and carbon steel in aggressive medium. Int J Electrochem Sci 14:2780–2803. https://doi.org/10.20964/2019.03.55

    CAS  Article  Google Scholar 

  14. Branzoi F, Branzoi V, Musina A (2013) Coatings based on conducting polymers and functionalized carbon nanotubes obtained by electropolymerization. Prog Org Coat 76:632–638. https://doi.org/10.1016/j.porgcoat.2012.12.003

    CAS  Article  Google Scholar 

  15. Branzoi F, Branzoi V, Licu C (2014) Corrosion inhibition of carbon steel in cooling water systems by new organic polymers as green inhibitors. Mater Corros 65:637. https://doi.org/10.1002/maco.201206579

    CAS  Article  Google Scholar 

  16. Branzoi F, Pahom Z, Nechifor G (2018) Corrosion protection of new composite polymer coating for carbon steel in sulfuric acid medium by electrochemical methods. J Adhes Sci Technol 32:2364–2380. https://doi.org/10.1080/01694243.2018.1478611

    CAS  Article  Google Scholar 

  17. Chikh ZA, Chebabe D, Dermaj A, Hajjaji N, Srhiri A, Montemor MF, Ferreira MGS, Bastos AC (2005) Electrochemical and analytical study of corrosion inhibition on carbon steel in HCl medium by 1,12-bis(1,2,4-triazolyl)dodecane. Corros Sci 47:447–459. https://doi.org/10.1016/j.corsci.2004.05.028

    CAS  Article  Google Scholar 

  18. Daoud D, Douadi T, Hamani H, Chafaa S, Al-Noaimi M (2015) Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: experimental and computational study. Corros Sci 94:21–37. https://doi.org/10.1016/j.corsci.2015.01.025

    CAS  Article  Google Scholar 

  19. Deng SD, Li XH, Xie XG (2014) Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corros Sci 80:276–289. https://doi.org/10.1016/j.corsci.2013.11.041

    CAS  Article  Google Scholar 

  20. Fouda AS, Ellithy AS (2009) Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution. Corros Sci 51:868–875. https://doi.org/10.1016/j.corsci.2009.01.011

    CAS  Article  Google Scholar 

  21. Gîfu IC, Maxim ME, Iovescu A, Simion EL, Aricov L, Anastasescu M, Munteanu C, Anghel DF (2016) Surface hydrophobization by electrostatic deposition of hydrophobically modified poly(acrylates) and their complexes with surfactants. Appl Surf Sci 371:519–529. https://doi.org/10.1016/j.apsusc.2016.03.036

    CAS  Article  Google Scholar 

  22. Gîfu IC, Maxim ME, Iovescu A, Aricov L, Simion EL, Anastasescu M, Munteanu C, Anghel DF (2017) Natural aging of multilayer films containing hydrophobically modified poly(acrylate)s or their complexes with surfactants. Appl Surf Sci 412:489–496. https://doi.org/10.1016/j.apsusc.2017.03.250

    CAS  Article  Google Scholar 

  23. Gong W, Yin X, Liu Y, Chen Y, Yang W (2019) 2-Amino-4-(4-methoxyphenyl)-thiazole as a novel corrosion inhibitor for mild steel in acidic medium. Prog Org Coat 126:150–161. https://doi.org/10.1016/j.porgcoat.2018.10.001

    CAS  Article  Google Scholar 

  24. Gopi D, Govindaraju KM, Kavitha L (2010) Investigation of triazole derived Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid medium. J Appl Electrochem 401:349–1356. https://doi.org/10.1007/s10800-010-0092-z

    CAS  Article  Google Scholar 

  25. Hasanov R, Bilge S, Bilgic S, Gece G, Kılıc Z (2010) Experimental and theoretical calculations on corrosion inhibition of steel in 1 M H2SO4by crown type polyethers. Corros Sci 52:984–990. https://doi.org/10.1016/j.corsci.2009.11.022

    CAS  Article  Google Scholar 

  26. He X, Jiang Y, Li C, Wang W, Hou B, Wu L (2014) Inhibition properties and adsorption behavior of imidazole and 2-phenyl-2-imidazoline on AA5052 in 1.0 M HCl solution. Corros Sci 83:124–136. https://doi.org/10.1016/j.corsci.2014.02.004

    CAS  Article  Google Scholar 

  27. Hegazy MA (2015) Novel cationic surfactant based on triazole as a corrosion inhibitor for carbon steel in phosphoric acid produced by dihydrate wet process. J Mol Liq 208:227–236. https://doi.org/10.1016/j.molliq.2015.04.042

    CAS  Article  Google Scholar 

  28. Hegazy MA, El-Tabei AS, Bedair AH, Sadeq MA (2012) An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5M H2SO4. Corros Sci 54:219–230. https://doi.org/10.1016/j.corsci.2011.09.019

    CAS  Article  Google Scholar 

  29. Hejazi S, Mohajernia Sh, Moayed MH, Davoodi A, Rahimizadeh M, Momeni M, Eslami A, Shiri A, Kosari A (2015) Electrochemical and quantum chemical study of Thiazolo-pyrimidine derivatives as corrosion inhibitors on mild steel in 1 M H2SO4. J Ind Eng Chem 25:112–121. https://doi.org/10.1016/j.jiec.2014.10.020

    CAS  Article  Google Scholar 

  30. Hu Z, Meng Y, Ma X, Zhu H, Li J, Li C, Cao D (2016) Experimental and theoretical studies of benzothiazole derivatives as corrosion inhibitors for carbon steel in 1 M HCl. Corros Sci 112:563–575. https://doi.org/10.1016/j.corsci.2016.08.012

    CAS  Article  Google Scholar 

  31. Jones D (1992) Principle and prevention of corrosion. MacMillan Publishing Company, New York

    Google Scholar 

  32. Jyothi S, Ravichandran J (2014) corrosion inhibition of mild steel in sulphuric acid using luffa aegyptiaca leaves extract. Acta Metall Sin 27:969–980. https://doi.org/10.1007/s40195-014-0107-6

    CAS  Article  Google Scholar 

  33. Khadraoui Khelifa A, Boutoumi H, Hamitouche H, Mehdaoui R, Hammouti B, Al-Deyab SS (2014) Adsorption and inhibitive properties of Ruta chalepensis L. oil as a green inhibitor of steel in 1 M hydrochloric acid medium. Int J Electrochem Sci 9:3334–3348

    Google Scholar 

  34. Khaled KF, Amin Mohammed A (2009) Corrosion monitoring of mild steel in sulphuric acid solutions in presence of some thiazole derivatives–molecular dynamics, chemical and electrochemical studies. Corros Sci 51:1964–1975. https://doi.org/10.1016/j.corsci.2009.05.023

    CAS  Article  Google Scholar 

  35. Labjar N, Lebrini M, Bentiss F, Chihib NE, El Hajjaji S, Jama C (2010) Corrosion inhibition of carbon steel and antibacterial properties of aminotris-(methylenephosphonic) acid. Mater Chem Phys 119:330–336. https://doi.org/10.1016/j.matchemphys.2009.09.006

    CAS  Article  Google Scholar 

  36. Li X, Deng S, Fu H, Mu G (2009) Inhibition effect of 6-benzylaminopurine on the corrosion of cold rolled steel in H2SO4 solution. Corros Sci 51:620–634. https://doi.org/10.1016/j.corsci.2008.12.021

    CAS  Article  Google Scholar 

  37. Migahed MA, EL-Rabiei MM, Nady H, Zaki EG (2018) Novel Gemini cationic surfactants as anti-corrosion for X-65 steel dissolution in oilfield produced water under sweet conditions: combined experimental and computational investigations. J Mol Struct 1159:10–22. https://doi.org/10.1016/j.molstruc.2018.01.033

    CAS  Article  Google Scholar 

  38. Mobin M, Rizvi M (2016) Inhibitory effect of xanthan gum and synergistic surfactant additives for mild steel corrosion in 1 M HCl. Carbohydr Polym 136:384–393. https://doi.org/10.1016/j.carbpol.2015.09.027

    CAS  Article  PubMed  Google Scholar 

  39. Negm NA, Migahed MA, Farag RK, Fadda AA, Awad MK, Shaban MM (2018) High performance corrosion inhibition of novel tricationic surfactants on carbon steel in formation water: electrochemical and computational evaluations. J Mol Liq 262:363–375. https://doi.org/10.1016/j.molliq.2018.04.092

    CAS  Article  Google Scholar 

  40. Noor EA, Al-Moubaraki AH (2008) Thermodynamic study of metal corrosion and inhibitor adsorption processes in mild steel/1-methyl-4[4′(-X)-styryl pyridinium iodides/hydrochloric acid systems. Mater Chem Phys 110:145–154. https://doi.org/10.1016/j.matchemphys.2008.01.028

    CAS  Article  Google Scholar 

  41. Obot IB, Obi-Egbedi NO (2010) Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole: experimental and theoretical investigation. Corros Sci 52:198–204. https://doi.org/10.1016/j.corsci.2009.09.002

    CAS  Article  Google Scholar 

  42. Obot IB, Onyeachu IB, Kumar AM (2017a) Sodium alginate: a promising biopolymer for corrosion protection of API X60 high strength carbon steel in saline medium. Carbohydr Polym 178:200–208. https://doi.org/10.1016/j.carbpol.2017.09.049

    CAS  Article  PubMed  Google Scholar 

  43. Obot IB, Ankah NK, Sorour AA, Gasem ZM, Haruna K (2017b) 8-Hydroxyquinoline as an alternative green and sustainable acidizing oilfield corrosion inhibitor. Sustain Mater Technol 14:1–10. https://doi.org/10.1016/j.susmat.2017.09.001

    CAS  Article  Google Scholar 

  44. Popova A, Christov M, Raicheva S, Sokolova E (2004) Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion. Corros Sci 46:1333–1350. https://doi.org/10.1016/j.corsci.2003.09.025

    CAS  Article  Google Scholar 

  45. Sangeetha Y, Meenakshi S, Sairam Sundaram C (2016) Interactions at the mild steel acid solution interface in the presence of O-fumaryl-chitosan: electrochemical and surface studies. Carbohydr Polym 136:38–45. https://doi.org/10.1016/j.carbpol.2015.08.057

    CAS  Article  PubMed  Google Scholar 

  46. Sastri VS (2011) Green corrosion inhibitors, theory and practice. Wiley, New Jersey

    Google Scholar 

  47. Singh AK, Quraishi MA (2010) Inhibiting effects of 5-substituted isatin-based Mannich bases on the corrosion of mild steel in hydrochloric acid solution. J Appl Electrochem 40:1293–1306. https://doi.org/10.1007/s10800-010-0079-9

    CAS  Article  Google Scholar 

  48. Singh K, Singh AK, Ebenso EE (2014) Inhibition effect of cefradine on corrosion of mild steel in HCl solution. Int J Electrochem Sci 9:352–364

    Google Scholar 

  49. Xu B, Gong W, Zhang K, Yang W, Liu Y, Yin X, Shi H, Chen Y (2015) Theoretical prediction and experimental study of 1-butyl-2-(4-methylphenyl)benzimidazole as a novel corrosion inhibitor for mild steel in hydrochloric acid. J Taiwan Inst Chem E 51:193–200. https://doi.org/10.1016/j.jtice.2015.01.014

    CAS  Article  Google Scholar 

  50. Yadav DK, Quraishi MA, Maiti B (2012a) Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation. Corros Sci 50:254–266. https://doi.org/10.1016/j.corsci.2011.10.030

    CAS  Article  Google Scholar 

  51. Yadav DK, Maiti B, Quraishi MA (2012b) Inhibition effect of some benzylidenes on mild steel in 1 M HCl: an experimental and theoretical correlation. Corros Sci 55:254–266. https://doi.org/10.1016/j.corsci.2011.10.030

    CAS  Article  Google Scholar 

  52. Yilmaz N, Fitoz A, Ergun Ü, Emregül K (2016) A combined electrochemical and theoretical study into the effect of 2-((thiazole-2-ylimino)methyl)phenol as a corrosion inhibitor for mild steel in a highly acidic environment. Corros Sci 111:110–120. https://doi.org/10.1016/j.corsci.2016.05.002

    CAS  Article  Google Scholar 

  53. Zhang J, Song WW, Shi DL (2012) A dissymmetric bis-quaternary ammonium salt gemini surfactant as effective inhibitor for Q235 steel in hydrochloric acid. Prog Org Coat 75:284–291. https://doi.org/10.1016/j.porgcoat.2012.08.007

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support from EU (ERDF) &Romanian Government infrastructure POS-CCE O 2.2.1. Grant Number: 169 INFRANANOCHEM is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Florina Branzoi or Adriana Băran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Branzoi, F., Băran, A., Ludmila, A. et al. The inhibition action of some organic polymers on the corrosion carbon steel in acidic media. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01242-x

Download citation

Keywords

  • Organic inhibitor
  • Carbon steel
  • Electrochemical methods
  • FT-IR spectroscopy
  • SEM