Adsorption of temozolomide chemotherapy drug on the pristine BC3NT: quantum chemical study

Abstract

Calculations based on the density functional theory were performed to evaluate the electrical response of BC3 nanotube (BC3NT) to temozolomide (TMZ) drug. Pristine BC3NT is shown to have a noticeable tendency toward the TMZ molecules, and the adsorption energy for the most stable configuration is about  − 18.84 kcal/mol. By adsorption of TMZ on the BC3NT surface, the HOMO–LUMO gap of BC3NT dramatically decreases from 2.37 to 1.36 eV, so the electrical conductivity is increased noticeably. Furthermore, the work function of BC3NT is influenced by the TMZ adsorption, which substantially alters the field emission electron current from its surface and reveals that it could also be a work function-based sensor for the detection of TMZ. The BC3NT has also the advantage of short recovery time about 2.93 ms for desorption of TMZ.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdulsattar MA (2011) SiGe superlattice nanocrystal pure and doped with substitutional phosphorus single atom: Density functional theory study. Superlattices Microstruct 50:377–385

    Article  CAS  Google Scholar 

  2. Ahmadi Peyghan A, Hadipour NL, Bagheri Z (2013) Effects of Al doping and double-antisite defect on the adsorption of HCN on a BC2N nanotube: density functional theory studies. J Phys Chem C 117:2427–2432

    Article  CAS  Google Scholar 

  3. Alinejad A, Raissi H, Hashemzadeh H (2019) Understanding co-loading of doxorubicin and camptothecin on graphene and folic acid-conjugated graphene for targeting drug delivery: classical MD simulation and DFT calculation. J Biomolec Struc Dynam1–9

  4. Bashiri S, Vessally E, Bekhradnia A, Hosseinian A, Edjlali L (2017) Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136:156–162

    Article  CAS  Google Scholar 

  5. Beheshtian J, Peyghan AA, Bagheri Z (2012) Detection of phosgene by Sc-doped BN nanotubes: a DFT study. Sensors Actuators B Chem 171:846–852

    Article  CAS  Google Scholar 

  6. Castro A, Marques MA, Rubio A (2004) Propagators for the time-dependent Kohn-Sham equations. J Chem Phys 121:3425–3433

    Article  CAS  Google Scholar 

  7. Civalleri B, Zicovich-Wilson C, Valenzano L, Ugliengo P (2008) B3LYP Augmented with an Empirical Dispersion Term (B3LYP-D*) as Applied to Molecular Crystals. Crystengcomm. https://doi.org/10.1039/b715018k

    Article  Google Scholar 

  8. Darjani S, Koplik J, Banerjee S, Pauchard V (2019) Liquid-hexatic-solid phase transition of a hard-core lattice gas with third neighbor exclusion. J Chem Phys 151:104702. https://doi.org/10.1063/1.5123231

    Article  PubMed  CAS  Google Scholar 

  9. Darjani S, Koplik J, Pauchard V (2017) Extracting the equation of state of lattice gases from random sequential adsorption simulations by means of the Gibbs adsorption isotherm. Physic Rev E 96:052803

    Article  Google Scholar 

  10. Gilbert TL (1975) Hohenberg-Kohn theorem for nonlocal external potentials. Physic Rev B 12:2111

    Article  Google Scholar 

  11. Golberg D, Bando Y, Bourgeois L, Kurashima K, Sato T (2000) Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles. Carbon 38:2017–2027

    Article  CAS  Google Scholar 

  12. Golberg D, Bando Y, Han W, Kurashima K, Sato T (1999) Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem Phys Lett 308:337–342

    Article  CAS  Google Scholar 

  13. Gong P et al (2019) Multifunctional fluorescent PEGylated fluorinated graphene for targeted drug delivery: an experiment and DFT study. Dyes Pigm 162:573–582

    Article  CAS  Google Scholar 

  14. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119:6398–6404

    Article  CAS  Google Scholar 

  15. Hernandez E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and B x C y N z composite nanotubes. Phys Rev Lett 80:4502

    Article  CAS  Google Scholar 

  16. Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F-Z, Watanabe Y (2009) Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys Rev B 79:125437

    Article  CAS  Google Scholar 

  17. Hoshino A et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169

    Article  CAS  Google Scholar 

  18. Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337:303–305

    Article  Google Scholar 

  19. Korotcenkov G (2013) Handbook of gas sensor materials. In: Conventional Approaches, vol 1. Springer

  20. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single-and few-layer MoS2 ACS. Nano 4:2695–2700

    CAS  Google Scholar 

  21. Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4:1000164

    Article  CAS  Google Scholar 

  22. March N (1957) The Thomas-Fermi approximation in quantum mechanics. Adv Phys 6:1–101

    Article  Google Scholar 

  23. Marino A et al (2019) Multifunctional temozolomide-loaded lipid superparamagnetic nanovectors: dual targeting and disintegration of glioblastoma spheroids by synergic chemotherapy and hyperthermia treatment. Nanoscale 11:21227–21248. https://doi.org/10.1039/C9NR07976A

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mozaffari A, Sharifi-Mood N, Koplik J, Maldarelli C (2016) Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys Fluids 28:053107

    Article  CAS  Google Scholar 

  25. Mozaffari S et al (2019) The role of nanoparticle size and ligand coverage in size focusing of colloidal metal nanoparticles. Nanoscale Adv 1:4052–4066

    Article  CAS  Google Scholar 

  26. Mozaffari S et al (2017) Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale 9:13772–13785

    Article  CAS  Google Scholar 

  27. Mozaffari S, Tchoukov P, Atias J, Czarnecki J, Nazemifard N (2015) Effect of asphaltene aggregation on rheological properties of diluted athabasca bitumen. Energy Fuels 29:5595–5599

    Article  CAS  Google Scholar 

  28. Mozaffari S, Tchoukov P, Mozaffari A, Atias J, Czarnecki J, Nazemifard N (2017) Capillary driven flow in nanochannels–Application to heavy oil rheology studies. Colloids Surfaces 513:178–187

    Article  CAS  Google Scholar 

  29. O’Boyle MMT (2008) A L. and Langer, K MJ Comput Chem 29:839

  30. Orojloo M, Arabahmadi R, Naderi F, Parchegani F, Solimannejad M, Zolgharnein P, Amani S (2018) A novel receptor for detection of Zn 2+ metal ion and F−, H 2 PO 4− and AcO− anions in aqueous media: a DFT study. Chem Papers 72:719–729

    Article  CAS  Google Scholar 

  31. Pan J-T et al (2015) A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury (II) detection with the naked eye. Chem Papers 69:527–535

    Article  CAS  Google Scholar 

  32. Rani P, Jindal V (2013) Toluene adsorption on Na-graphene interface-a DFT study. In: AIP Conference Proceedings, 2013. vol 1. American Institute of Physics, pp 389–390

  33. Richardson O (1924) Electron emission from metals as a function of temperature. Phys Rev 23:153

    Article  CAS  Google Scholar 

  34. Schmidt MW et al (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  35. Selvaraj V, Alagar M (2007) Analytical detection and biological assay of antileukemic drug 5-fluorouracil using gold nanoparticles as probe. Int J Pharmaceut 337:275–281. https://doi.org/10.1016/j.ijpharm.2006.12.027

    Article  CAS  Google Scholar 

  36. Solğun DG, Keskin MS, Ağırtaş MS (2020) DFT analysis and electronic properties, and synthesis of tetra (9-phenyl-9H-xanthen-9-yl) oxy peripheral-substituted zinc phthalocyanine. Chem Papers:1–13

  37. Srimathi U, Nagarajan V, Chandiramouli R (2019) Investigation on graphdiyne nanosheet in adsorption of sorafenib and regorafenib drugs: a DFT approach. J Mol Liq 277:776–785

    Article  CAS  Google Scholar 

  38. Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  Google Scholar 

  39. Tanaka H, Kawamata Y, Simizu H, Fujita T, Yanagisawa H, Otani S, Oshima C (2005) Novel macroscopic BC3 honeycomb sheet. Solid State Commun 136:22–25

    Article  CAS  Google Scholar 

  40. Tomić S, Montanari B, Harrison N (2008) The group III–V's semiconductor energy gaps predicted using the B3LYP hybrid functional. Physica E Low-dimens Syst Nanostruc 40:2125–2127

    Article  CAS  Google Scholar 

  41. Wang Q, Chen L-Q, Annett JF (1996) Stability and charge transfer of C 3 B ordered structures. Phys Rev 54:R2271

    Article  CAS  Google Scholar 

  42. Yi J-Y, Bernholc J (1993) Atomic structure and doping of microtubules. Phys Rev B 47:1708

    Article  CAS  Google Scholar 

Download references

Acknowledgement

National millet and sorghum industrial technology system (CARS-06-13.5-A30); Key R & D projects of Shanxi Province (201703D211001-06-01), Key R & D projects of Shanxi Province (201703D211012-2), Shanxi Agricultural valley construction and scientific research project (SXNGJSKYZX201901), Cooperative project of Shanxi Agricultural University (Research and development of functional grain food).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xiaowen Wang or Liang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Lu, Z., Jing, X. et al. Adsorption of temozolomide chemotherapy drug on the pristine BC3NT: quantum chemical study. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01232-z

Download citation

Keywords

  • Sensor
  • Temozolomide
  • Adsorption energy
  • Electrical response and work function