Hydrogen bonding supramolecular networks of copper(II) 2-choronicotinate complexes with picolinamide, nicotinamide, N-methyl-nicotinamide, 2-pyridylmethanol and 4-pyridylmethanol: Hirshfeld surface analysis and spectral properties

Abstract

The crystal and molecular structure of copper(II) 2-chloronicotinate (2-Clnic) of the composition [Cu(2-Clnic)2(pia)2] (pia = Picolinamide) (1), [Cu(2-Clnic)2(nia)2] (nia = Nicotinamide) (2), [Cu(2-Clnic)2(nia)2(H2O)]·H2O (3), [Cu(2-Clnic)2(mna)2(H2O)2] (mna = N-methylnicotinamide) (4), [Cu(2-Clnic)2(2 pm)2] (2 pm = 2-Pyridylmethanol) (5), and [Cu(2-Clnic)2(4 pm)2(H2O)2]·2H2O (4 pm = 4-Pyridylmethanol) (6) were determined by single-crystal X-ray analysis. Crystal structures of the respective complexes are monomeric with a different composition of coordination sphere about Cu(II) atom. The arrangement about Cu(II) in all coordination compounds are pseudooctahedral trans-coordinated, where carboxylic groups are bidentate (2,3) or monodentate (1,36) coordinated to atom copper. The molecules of all compounds are connected by strong N–H···O, N–H···N and/or O–H···O hydrogen bonds. EPR spectra of powder complexes 16 were measured and computer-simulated.

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Addison AW, Rao TN, Reedijk J, Rija J, Verchoors GC (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc Dalton Trans 1984:1349–1356. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  2. Banti CN, Hadjikakou SK (2016) Non-steroidal anti-inflammatory drugs (NSAIDs) in metal complexes and their effect at the cellular level. Eur J Inorg Chem 2016:3048–3071. https://doi.org/10.1002/ejic.201501480

    CAS  Article  Google Scholar 

  3. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed Engl 34:1555–1573. https://doi.org/10.1002/anie.199515551

    CAS  Article  Google Scholar 

  4. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr A 71:59–75. https://doi.org/10.1107/S2053273314022207

    CAS  Article  Google Scholar 

  5. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, Giacovazzo C, Mallamo M, Mazzone A, Polidori G, Spagna R (2012) SIR2011: a new package for crystal structure determination and refinement. J Appl Crystallogr 45:357–361. https://doi.org/10.1107/S0021889812001124

    CAS  Article  Google Scholar 

  6. Caglar S, Saykal T, Buyukgungor O, Sahin E (2014) Copper(II) 2-benzoylbenzoate complexes containing 2-pyridylmethanol and 2-pyridilethanol: synthesis, crystal structures, spectroscopic, and thermal properties. Synth React Inorg Met-Org Nano-Met Chem 44:1234–1242. https://doi.org/10.1080/15533174.2013.799491

    CAS  Article  Google Scholar 

  7. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    CAS  Article  Google Scholar 

  8. Goodman BA, Raynor JB (1970) Electron spin resonance of transition metal complexes. Adv Inorg Chem Radiochem 13:135–362. https://doi.org/10.1016/S0065-2792(08)60336-2

    CAS  Article  Google Scholar 

  9. Hathaway BJ (1987) Comprehensive coordination chemistry, vol 5. Pressm Oxford, Pergamon

    Google Scholar 

  10. Hathaway BJ, Billing DE (1970) The electronic properties and stereochemistry of mononuclear complexes of copper(II) ion. Coord Chem Rev 5:143–207. https://doi.org/10.1016/S0010-8545(00)80135-6

    CAS  Article  Google Scholar 

  11. Hathaway BJ, Tomlinson AAG (1970) Copper amonia complexes. Coord Chem Rev 5:1–43. https://doi.org/10.1016/S0010-8545(00)80073-9

    CAS  Article  Google Scholar 

  12. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138. https://doi.org/10.1007/bf00549096

    CAS  Article  Google Scholar 

  13. Hoang NN, Valach F, Dunaj-Jurco M, Melnik M (1992) Structure of bis(salicylato)bis(2-pyridylmethanol)copper(II). Acta Crystallogr C 48:443–445. https://doi.org/10.1107/S0108270191009897

    Article  Google Scholar 

  14. Jin SW, Wang DQ, Xu YC (2012) Five new metal(II) complexes with 3-D network structures based on carboxylate and bis(imidazole) ligands: syntheses and structures. J Coord Chem 65:1953–1969. https://doi.org/10.1080/00958972.2012.688116

    CAS  Article  Google Scholar 

  15. Jin SW, Ye XH, Jin L, Zheng L, Li JW, Jin BP, Wang DQ (2014) Syntheses and structural characterization of nine coordination compounds assembled from copper acetate, 3,5-dimethylpyrazole and carboxylate. Polyhedron 81:382–395. https://doi.org/10.1016/j.poly.2014.06.034

    CAS  Article  Google Scholar 

  16. Jin SW, Liu H, Chen GQ, An ZY, Lou YL, Huang K, Wang DQ (2015) Syntheses and crystal structures of copper(II), zinc(II) and cadmium(II) complexes containing pyridine, quinoline and 2-methylquinoline. Polyhedron 95:91–107. https://doi.org/10.1016/j.poly.2015.04.017

    CAS  Article  Google Scholar 

  17. Jozefíková F, Mazúr M, Puchoňová M, Valigura D (2018) Nitrosalicylatocopper(II) complexes with chelating pyridine derivatives. Acta Chimica Slovaca 11:21–25. https://doi.org/10.2478/acs-2018-0004

    CAS  Article  Google Scholar 

  18. Koziskova J, Hahn F, Richter J, Kozisek J (2016) Comparison of different absorption corrections on the model structure of tetrakis(μ2-acetato)-diaqua-di-copper(II). Acta Chimica Slovaca 9:136–140. https://doi.org/10.1515/acs-2016-0023

    CAS  Article  Google Scholar 

  19. Lever ABP (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  20. Lu Y (2003) Crystal engineering of Cu-containing metal-organic coordination polymers under hydrothermal conditions. Coord Chem Rev 246:327–347. https://doi.org/10.1016/j.cct.2003.08.005

    CAS  Article  Google Scholar 

  21. Marzano C, Pellei M, Tisato F, Santini C (2009) Copper complexes as anticancer agents. Anti-Cancer Agent Med 9:185–211. https://doi.org/10.2174/187152009787313837

    CAS  Article  Google Scholar 

  22. Mazur M (2006) Dozen of useful tips how to minimize influence of error sources in quantitative EPR spectroscopy. A review. Anal Chim Acta 561:1–15. https://doi.org/10.1016/j.aca.2006.01.006

    CAS  Article  Google Scholar 

  23. Mazur M, Morris H, Valko M (1997) Analysis of the movement of line-like samples of variable length along the X-Axis of a double TE104 and a single TE102 rectangular cavity. J Magnet Reson 129:188–200. https://doi.org/10.1006/jmre.1997.1248

    CAS  Article  Google Scholar 

  24. Mazur M, Valko M, Morris H (2000) Analysis of the radial and longitudinal effect in a double TE104 and a single TE102 rectangular cavity. J Magnet Reson 142:37–56. https://doi.org/10.1006/jmre.1999.1915

    CAS  Article  Google Scholar 

  25. McCormack PL, Keating GM (2005) Prolonged-relase nicotinic acid: a review of its use in the treatment of dyslipidaemia. Drugs 65:2719–2740. https://doi.org/10.2165/00003495-200565180-00014

    CAS  Article  PubMed  Google Scholar 

  26. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr B 60:627–668. https://doi.org/10.1107/S0108768104020300

    CAS  Article  PubMed  Google Scholar 

  27. McKinnon JJ, Jayalitaka D, Spackman MA (2007) Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem Commun. https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  28. Miklos D, Segla P, Palicova M, Kopcova M, Melnik M, Valko M, Glowiak T, Korabik M, Mrozinski J (2001) Synthesis, spectral and magnetic properties, and crystal structures of copper(II) 2-methylthionicotinate adducts with chelating ligands. Polyhedron 20:1867–1874. https://doi.org/10.1016/S0277-5387(01)00757-4

    CAS  Article  Google Scholar 

  29. Miklovic J, Valigura D, Svoboda I, Moncol J, Mazur M (2016) Synthesis, crystal structure and spectral properties of copper(II) 2-chloronicotinato complexes with N-heterocyclic ligands. Nova Biotechnologica et Chimica 15–2:190–199. https://doi.org/10.1515/nbec-2016-0019

    CAS  Article  Google Scholar 

  30. Moncol J, Palicova M, Segla P, Koman M, Melnik M, Valko M, Glowiak T (2002) Structure and spectral study of copper(II) pyridinecarboxylates: crystal and molecular structure of trans-diaqua-bis(N, N-diethylnicotinamide-N)bis(2-chloronicotinate-O)copper(II). Polyhedron 21:365–370. https://doi.org/10.1016/S0277-5387(01)01003-8

    CAS  Article  Google Scholar 

  31. Moncol J, Kalinakova B, Svorec J, Kleinova M, Koman M, Hudecova D, Melnik M, Mazur M, Valko M (2004a) Spectral properties and bio-activity of copper(II) clofibriates, part III: crystal structure of Cu(clofibriate)2(2-pyridylmethanol)2, Cu(clofibriate)2(4-pyridylmethanol)2(H2O) dihydrate, and Cu2(clofibriate)4(N, N-diethylnicotinamide)2. Inorg Chim Acta 357:3211–3222. https://doi.org/10.1016/j.ica.2004.03.043

    CAS  Article  Google Scholar 

  32. Moncol J, Mudra M, Lonnecke P, Koman M, Melnik M (2004b) Copper(II) halogenopropionates: low-temperature crystal and molecular structure of bis(2,2-dichloropropionato)-di(methyl-3-pyridylcarbamate)copper(II) and bis(2-bromopropionato)-di(2-pyridylmethanol)copper(II). J Coord Chem 57:1065–1078. https://doi.org/10.1080/00958970412331281836

    CAS  Article  Google Scholar 

  33. Moncol J, Segla P, Miklos D, Mazur M, Melnik M, Glowiak T, Valko M, Koman M (2006) Structural diversity of coordination polymers with bridging 3-pyridylmethanol ligand: new type of coordination polymer with different stereochemistry of copper(II) atom. Polyhedron 25:1561–1566. https://doi.org/10.1016/j.poly.2005.10.029

    CAS  Article  Google Scholar 

  34. Moncol J, Korabik M, Segla P, Koman M, Miklos D, Jaskova J, Glowiak T, Melnik M, Mrozinski J, Sundberg MR (2007a) Preparation, structure, spectral, and magnetic properties of copper(II) halogenonicotinates: crystal and molecular structure of tetrakis(μ-2-chloronicotinato-O, O’)-diaquadicopper(II). Z Anorg Allg Chem 633:298–305. https://doi.org/10.1002/zaac.200600183

    CAS  Article  Google Scholar 

  35. Moncol J, Maroszova J, Vaskova Z, Valko M, Mazur M, Melnik M, Koman M (2007b) Structural study of copper(II) 2-chloronicotinate complexes with some pyridine derivatives. In: Melnik M, Sima J, Tatarko M (eds) Achievements in coordination, bioinorganic and applied inorganic chemistry, Slovak Technical University Press, Bratislava, pp 208–213

  36. Nakamoto I (2009) Infrared and Raman spectra of inorganic and coordination compounds, Part B, 6th edn. Wiley, New York, p 2009

    Google Scholar 

  37. Palatinus L, Chapuis G (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790. https://doi.org/10.1107/S0021889807029238

    CAS  Article  Google Scholar 

  38. Parkin A, Barr G, Dong W, Gilmore CJ, Jayalitaka D, McKinnon JJ, Spackman MA, Wilson CC (2007) Comparing entire crystal structures: structural genetic fingerprinting. CrystEngComm 9:648–652. https://doi.org/10.1039/B704177B

    CAS  Article  Google Scholar 

  39. Pucekova-Repicka Z, Moncol J, Valigura D, Lis T, Korabik M, Melnik M, Mrozinski J, Mazur M (2007) Synthesis, structure, spectral and magnetic properties of 4-methoxy- and 3-methylsalicylatocopper(II) complexes with 2-pyridylmethanol. J Coord Chem 60:2449–2460. https://doi.org/10.1080/00958970701272565

    CAS  Article  Google Scholar 

  40. Repicka Z, Puchonova M, Husarikova L, Moncol J, Koman M, Mazur M, Valigura D (2012) Methyl- and methoxysalicylatocopper complexes with 2-pyridylmethanol: synthesis, spectral properties, structure and EPR characterization in solid-state and in solution. Cent Eur J Chem 10:1506–1515. https://doi.org/10.2478/s11532-012-0065-7

    CAS  Article  Google Scholar 

  41. Rigaku Oxford Diffraction (2017) CrysAlis PRO Versions 38.46. Rigaku Oxford Diffraction Poland Wrocław Poland

  42. Santini C, Pellei M, Gandin V, Porchia M, Tisato F, Marzano C (2014) Advances in copper complexes as anticancer agents. Chem Rev 114:815–862. https://doi.org/10.1021/cr400135x

    CAS  Article  PubMed  Google Scholar 

  43. Segla P, Miklos D, Olejnikova P, Kalinakova B, Hudecova D, Palicova M, Svorec J, Valko M, Melnik M, Glowiak T (2004a) Copper(II) pyridinecarboxylate adducts with chelating ligands as potential antimicrobial agents. Inorg Chim Acta 357:4172–4180. https://doi.org/10.1016/j.ica.2004.06.047

    CAS  Article  Google Scholar 

  44. Segla P, Palicova M, Miklos D, Koman M, Korabik M, Mrozinski J, Glowiak T, Sundberg MR, Lonnecke P (2004b) Synthesis, spectral and magnetic properties, and crystal structures of copper(II) pyridinecarboxylate adducts with N-heterocyclic ligands. Z Anorg Allg Chem 630:470–478. https://doi.org/10.1002/zaac.200300365

    CAS  Article  Google Scholar 

  45. Segla P, Miklovic J, Miklos D, Mrazova V, Krupkova L, Hudecova D, Ondrusova Z, Svorec J, Moncol J, Melnik M (2009) Synthesis, spectroscopic properties, crystal structure and biological activities of copper(II) 2-methylthionicotinate complexes with furopyridine. Trans Met Chem 34:15. https://doi.org/10.1007/S11243-008-9151-2

    CAS  Article  Google Scholar 

  46. Shaikh MM, Mishra V, Ram P, Birla A (2012) Bis[2-(2-hydroxymethyl)pyridine-κ2 N, O]-pivalato-κO)copper(II). Acta Crystallogr E 68:m1055. https://doi.org/10.1107/S1600536812030917

    CAS  Article  Google Scholar 

  47. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

    CAS  Article  Google Scholar 

  48. Sieron L (2007) trans-Bis(hydrogen maleato-κO)bis(pyridine-2-carboxamide-κ2N1, O)copper(II). Acta Crystallogr E63:m862–m864. https://doi.org/10.1107/S1600536807008008

    CAS  Article  Google Scholar 

  49. Spackman MA, Jayalitaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    CAS  Article  Google Scholar 

  50. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 4:378–392. https://doi.org/10.1039/B203191B

    CAS  Article  Google Scholar 

  51. Tardito S, Marchio L (2009) Copper compounds in anticancer strategies. Curr Med Chem 16:1325–1348. https://doi.org/10.2174/092986709787846532

    CAS  Article  PubMed  Google Scholar 

  52. Thiele H, Etstling J, Such P, Hoefer P (1992) WINEPR. Bruker Analytic Gmb, Germany

    Google Scholar 

  53. Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2009) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30:708–749. https://doi.org/10.1002/med.20174

    CAS  Article  Google Scholar 

  54. Turner MJ, McKinnon JJ, Wolff SK, Gromwood DJ, Spackman PR, Jayalitaka D, Spackman MA (2017) CrystalExplorer17.5. The University of Western Australia

  55. Weber RT (1995) WINEPR SimFonia, Billerica, USA, EPR Division, Bruker Instr. Inc

  56. Weder JE, Dillon CT, Hambley TW, Kennedy BJ, Lay PA, Biffin JR, Regtop HL (2002) Copper complexes of non-steroidal anti-inflammatory drugs: an opportunity yet to be realized. Coord Chem Rev 232:95–126. https://doi.org/10.1016/S0010-8545(02)00086-3

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank to Prof. Tadeusz Lis for measuring data of 4 and 6. We thank Slovak Research and Development Agency (APVV-15-0053, APVV-17-0513 and APVV-18-0016), Slovak Grant Agency (VEGA 1/0639/18 and 1/0482/20). M.M. thanks Ministry of Education, Science, Research and Sport of the Slovak Republic for funding within the scheme “Excellent research teams”. This article was created with the support of the Ministry of Education, Science, Research and Sport of the Slovak Republic within the Research and Development Operational Program for the project “University Science Park of STU Bratislava”, ITMS 26240220084, co-funded by the European Regional Development Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jan Moncol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was presented at the International Conference on Coordination and Bioinorganic Chemistry held in Smolenice on June 2–7, 2019.

Some preliminary results have been presents as communication on 21th International Conference on Coordination and Bioinorganic Chemistry (Moncol et al. 2007b).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10535 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jozefikova, F., Kuckova, L., Lokaj, J. et al. Hydrogen bonding supramolecular networks of copper(II) 2-choronicotinate complexes with picolinamide, nicotinamide, N-methyl-nicotinamide, 2-pyridylmethanol and 4-pyridylmethanol: Hirshfeld surface analysis and spectral properties. Chem. Pap. (2020). https://doi.org/10.1007/s11696-020-01224-z

Download citation

Keywords

  • Copper(II) complexes
  • 2-Chloronicotinate
  • Crystal structure
  • Hydrogen bonds